Anthropogenic activities, such as industrial wastewater and use of water softeners, cause hyper-accumulation of Cl in water sources and soils. Currently, industries have no sustainable method to remove these Cl ions from wastewater. This study was conducted to evaluate the integrative responses of wheat cultivated in five industrial effluent-affected areas (S2-S6) by investigating soil characters and bioaccumulation of metals in wheat plants and grains. The S4 site (near the second chloride outlet) exhibited a higher concentration of CO, SO, NO, Cl, Cd, Mn, Ni, Cr, and Zn. Soil from S6 (sewage wastewater downstream getting mixed with chloride-contaminated water) had a minimum level of nutrients (Na, K, and Ca), maximum metals (Cd, Fe, Pb, Mn), and reduction in plant biomass. In site S2 (sewage wastewater upstream of the chloride factory), a higher level of minerals and metals was noted in the roots. Maximum metals in grains occurred in S6 with higher organic osmolytes. The sequestration capacity of metals in leaves was also increased by alterations in anatomical traits. Results indicated that metals and hyper-Cl concentration employed a negative influence on the plants because of poor soil quality, extremely damaged microstructures leading to reduced yield, poor grain quality, and excessive translocation from roots to wheat grains. These findings revealed that contaminated plants used as either green forage or hay are noxious to animals and if used as grain for feed or humans can lead to serious health hazards.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-30340-yDOI Listing

Publication Analysis

Top Keywords

sequestration capacity
8
wheat grains
8
sewage wastewater
8
maximum metals
8
metals
6
foliar architecture
4
architecture differentially
4
differentially restrains
4
restrains metal
4
metal sequestration
4

Similar Publications

Balancing the solar irradiance needs: optimising growth in sphagnum palustre through tailored UV-B effects.

BMC Plant Biol

January 2025

Hubei Key Laboratory of Biological Resource Protection and Utilization, Enshi, 445000, China.

Background: The carbon sequestration potential and water retention capacity of peatlands are closely linked to the growth dynamics of Sphagnum mosses. However, few studies have focused on the response of Sphagnum moss growth dynamics to UV-B radiation, and existing research has emphasized species differences. In this study, Sphagnum palustre L.

View Article and Find Full Text PDF

Increasing pesticide diversity impairs soil microbial functions.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Pesticide application is essential for stabilizing agricultural production. However, the effects of increasing pesticide diversity on soil microbial functions remain unclear, particularly under varying nitrogen (N) fertilizer management practices. In this study, we investigated the stochasticity of soil microbes and multitrophic networks through amplicon sequencing, assessed soil community functions related to carbon (C), N, phosphorus (P), and sulfur (S) cycling, and characterized the dominant bacterial life history strategies via metagenomics along a gradient of increasing pesticide diversity under two N addition levels.

View Article and Find Full Text PDF

Controls of the Nucleation Rate and Advection Rate on Barite Precipitation in Fractured Porous Media.

Langmuir

January 2025

State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.

Mineral precipitation is ubiquitous in natural and engineered environments, such as carbon mineralization, contaminant remediation, and oil recovery in unconventional reservoirs. The precipitation process continuously alters the medium permeability, thereby influencing fluid transport and subsequent reaction kinetics. The diversity of preferential precipitation zones controls flow and transport efficiency as well as the capacity of mineral sequestration and immobilization.

View Article and Find Full Text PDF

Optimizing Surface Maleimide/cRGD Ratios Enhances Targeting Efficiency of cRGD-Functionalized Nanomedicines.

J Am Chem Soc

January 2025

Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China.

Thiol-maleimide (MI) chemistry is a cornerstone of bioconjugation strategies, particularly in the development of drug delivery systems. The cyclic arginine-glycine-aspartic acid (cRGD) peptide, recognized for its ability to target the integrin αβ, is commonly employed to functionalize maleimide-bearing nanoparticles (NPs) for fabricating cRGD-functionalized nanomedicines. However, the impact of cRGD density on tumor targeting efficiency remains poorly understood.

View Article and Find Full Text PDF

Depth heterogeneity of lignin-degrading microbiome and organic carbon processing in mangrove sediments.

NPJ Biofilms Microbiomes

January 2025

School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China.

Mangrove ecosystems are globally recognized for their blue carbon (C) sequestration capacity. Lignocellulosic detritus constitutes the primary C input to mangrove sediments, but the microbial processes involved in its bioprocessing remain unclear. Using lignocellulosic analysis and metagenomic sequencing across five 100-cm sediment cores, we found a high proportion of lignin (95.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!