The cistrome consists of all cis-acting regulatory elements recognized by transcription factors (TFs). However, only a portion of the cistrome is active for TF binding in a specific tissue. Resolving the active cistrome in plants remains challenging. In this study, we report the assay sequential extraction assisted-active TF identification (sea-ATI), a low-input method that profiles the DNA sequences recognized by TFs in a target tissue. We applied sea-ATI to seven plant tissues to survey their active cistrome and generated 41 motif models, including 15 new models that represent previously unidentified cis-regulatory vocabularies. ATAC-seq and RNA-seq analyses confirmed the functionality of the cis-elements from the new models, in that they are actively bound in vivo, located near the transcription start site, and influence chromatin accessibility and transcription. Furthermore, comparing dimeric WRKY CREs between sea-ATI and DAP-seq libraries revealed that thermodynamics and genetic drifts cooperatively shaped their evolution. Notably, sea-ATI can identify not only positive but also negative regulatory cis-elements, thereby providing unique insights into the functional non-coding genome of plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681729 | PMC |
http://dx.doi.org/10.1093/nar/gkad853 | DOI Listing |
Cell Rep
December 2024
Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA. Electronic address:
Androgen receptor (AR) splice variants, of which ARv7 is the most common, are increased in castration-resistant prostate cancer, but the extent to which they drive AR activity is unclear. We generated a subline of VCaP cells (VCaP16) that is resistant to the AR inhibitor enzalutamide (ENZ). AR activity in VCaP16 is driven by ARv7, independently of full-length AR (ARfl), and its cistrome and transcriptome mirror those of ARfl in VCaP cells.
View Article and Find Full Text PDFOncogene
November 2024
Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
Acquired resistance to androgen receptor (AR)-targeted therapies underscores the need to identify alternative therapeutic targets for treating lethal prostate cancer. In this study, we evaluated the prognostic significance of 1635 human transcription factors (TFs) by analyzing castration-resistant prostate cancer (CRPC) datasets from the West and East Stand Up to Cancer (SU2C) cohorts. Through this screening approach, we identified E2F8, a putative transcriptional repressor, as a TF consistently associated with poorer patient outcomes in both cohorts.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
Objectives: Acute lung injury (ALI) is an excessive inflammatory condition with the involvement of M1 alveolar macrophage (AM) polarization. Given the high mortality rate of ALI, elucidating its underlying mechanisms is crucial for identifying therapeutic targets. Inhibition of P300, a lysine acetyltransferase, has illustrated the potential to alleviate inflammatory diseases through the regulation of immune cell activation.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
Overcoming resistance to therapy is a major challenge in castration-resistant prostate cancer (CRPC). Lineage plasticity towards a neuroendocrine phenotype enables CRPC to adapt and survive targeted therapies. However, the molecular mechanisms of epigenetic reprogramming during this process are still poorly understood.
View Article and Find Full Text PDFMol Metab
December 2024
Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA. Electronic address:
Objectives: Deficiency in the transcription factor (TF) GLI-Similar 3 (GLIS3) in humans and mice leads to the development of polycystic kidney disease (PKD). In this study, we investigate the role of GLIS3 in the regulation of energy metabolism and mitochondrial functions in relation to its role in normal kidney and metabolic reprogramming in PKD pathogenesis.
Methods: Transcriptomics, cistromics, and metabolomics were used to obtain insights into the role of GLIS3 in the regulation of energy homeostasis and mitochondrial metabolism in normal kidney and PKD pathogenesis using GLIS3-deficient mice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!