The spin-splitting properties of Pb-adsorbed monolayer Janus WSeTe are investigated based on first-principles calculations. The adsorbed system shows large Rashba splitting (the Rashba parameter is up to 0.75 eV Å), and we find that different adsorption layers (Te/Se adsorption layers) exhibit different significant features under spin-orbit coupling. Zeeman splitting and Rashba splitting co-exist at the high symmetry point of the Te adsorption layer, while the Se adsorption layer exhibits anisotropic Rashba spin-orbit coupling. It was determined using · perturbation theory that Pb atom adsorption reduces the initial symmetry of the 2H-WSeTe monolayer and induces a strong spin-orbit coupling effect, so as to induce the anisotropic Rashba effect. Furthermore, the tunability of Rashba splitting was demonstrated by varying the adsorption concentration, adjusting the adsorption distance, and applying biaxial strain. This predicted adsorption system has potential value in spintronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp03331gDOI Listing

Publication Analysis

Top Keywords

spin-orbit coupling
16
anisotropic rashba
12
rashba splitting
12
rashba spin-orbit
8
splitting rashba
8
adsorption
8
adsorption layers
8
adsorption layer
8
rashba
7
tunable anisotropic
4

Similar Publications

Monolayer atomic thin films of group-V elements have a high potential for application in spintronics and valleytronics because of their unique crystal structure and strong spin-orbit coupling. We fabricated Sb and Bi monolayers on a SiC(0001) substrate by the molecular-beam-epitaxy method and studied the electronic structure by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. The fabricated Sb film shows the (√3×√3)R30º superstructure associated with the formation of ⍺-Sb, and exhibits a semiconducting nature with a band gap of more than 1.

View Article and Find Full Text PDF

Two-dimensional transition metal dichalcogenides (2D TMDCs) can be combined with organic semiconductors to form hybrid van der Waals heterostructures. Specially, non-fullerene acceptors (NFAs) stand out due to their excellent absorption and exciton diffusion properties. Here, we couple monolayer tungsten diselenide (ML-WSe) with two well performing NFAs, ITIC, and IT-4F (fluorinated ITIC) to achieve hybrid architectures.

View Article and Find Full Text PDF

Spin-orbit torques enable energy-efficient manipulation of magnetization by electric current and hold promise for applications ranging from non-volatile memory to neuromorphic computing. Here we report the discovery of a giant spin-orbit torque induced by anomalous Hall current in ferromagnetic conductors. This anomalous Hall torque is self-generated as it acts on the magnetization of the ferromagnet that engenders the torque.

View Article and Find Full Text PDF

The potential energy curves, dipole moments and transition dipole moments of the 14 Λ-S states and 30 Ω states of TlBr cation were performed using the multi-reference configuration interaction method. The Davidson correction and spin-orbit coupling effects were also considered. The spectroscopic properties and transition properties of TlBr cation were reported at the first time.

View Article and Find Full Text PDF

High-level multireference configuration interaction plus Davidson correction (MRCI + Q) calculation method was employed to determine the potential energy curves (PECs) of 10 Λ-S states, which come from the first and second dissociation channels of the SbP molecule, as well as 34 Ω states considering the spin-orbit coupling (SOC) effect. By solving the Schrödinger equation for nuclear motion, spectroscopic constants for the ground state XΣ and low-lying excited states were obtained and compared with experimental data. The excellent agreement indicates the reliability of our calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!