Dysregulation of lipid metabolism results in metabolism-related diseases. Our previous research indicated that 1.3% E and 4% E ruminant fatty acids (R-TFA) caused dyslipidemia and promoted atherosclerotic plaques in ApoE mice, presenting detrimental effects. However, the effect of R-TFA on the lipid metabolism of normal mice remains unclear. Therefore, our current research aims to explore the effects of butter-derived R-TFAs on the lipid metabolism of C57BL/6J mice through the integration of lipidomics and transcriptomics. As a result, we found that 1.3% E butter-derived R-TFA promoted dyslipidemia and impaired hepatic function in C57BL/6J mice fed a high-fat diet, which was associated with an increase in DG (18:1/22:5), TG (18:1/18:2/22:4) and FA (24:5) as determined through lipidomics analysis, but had a less significant effect on C57BL/6J mice fed a low-fat diet. Through a combination analysis and verification of gene expression, we found that the arachidonic acid pathway might be involved in the disruption of lipid metabolism by butter-derived R-TFA. In addition, butter-derived R-TFA up-regulated the expression of unigene thromboxane-A synthase 1 (Tbxas1), arachidonate lipoxygenase 3 (Aloxe3), acyl-coenzyme A thioesterase 2 (Acot2), epoxide hydrolase 2 (Ephx2) and carbonyl reductase 3 (Cbr3) in C57BL/6J mice fed a high-fat diet. Herein, our research provides a new perspective for exploring the effects of butter-derived R-TFA on lipid metabolism and speculates on the possible mechanism of lipid metabolism disorder induced by butter-derived R-TFA in C57BL/6J mice fed a high-fat diet.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3fo02508jDOI Listing

Publication Analysis

Top Keywords

lipid metabolism
28
c57bl/6j mice
24
butter-derived r-tfa
20
mice fed
16
fed high-fat
12
high-fat diet
12
lipidomics transcriptomics
8
ruminant fatty
8
fatty acids
8
metabolism c57bl/6j
8

Similar Publications

The distribution and bioaccumulation of environmental pollutants are essential to understanding their toxicological mechanism. However, achieving spatial resolution at the subtissue level is still challenging. Perfluorooctanesulfonate (PFOS) is a persistent environmental pollutant with widespread occurrence.

View Article and Find Full Text PDF

Lysosomal storage diseases (LSDs) comprise ~50 monogenic disorders marked by the buildup of cellular material in lysosomes, yet systematic global molecular phenotyping of proteins and lipids is lacking. We present a nanoflow-based multiomic single-shot technology (nMOST) workflow that quantifies HeLa cell proteomes and lipidomes from over two dozen LSD mutants. Global cross-correlation analysis between lipids and proteins identified autophagy defects, notably the accumulation of ferritinophagy substrates and receptors, especially in and mutants, where lysosomes accumulate cholesterol.

View Article and Find Full Text PDF

Mitochondrial fatty acid oxidation regulates monocytic type I interferon signaling via histone acetylation.

Sci Adv

January 2025

Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Although lipid-derived acetyl-coenzyme A (CoA) is a major carbon source for histone acetylation, the contribution of fatty acid β-oxidation (FAO) to this process remains poorly characterized. To investigate this, we generated mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1, distal FAO enzyme) knockout macrophages. C-carbon tracing confirmed reduced FA-derived carbon incorporation into histone H3, and RNA sequencing identified diminished interferon-stimulated gene expression in the absence of ACAT1.

View Article and Find Full Text PDF

Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons.

View Article and Find Full Text PDF

Sodium-glucose co-transporter 2 inhibitors, such as enavogliflozin, offer promising metabolic benefits for patients with type 2 diabetes (T2D), including glycemic control and improved cardiac function. Despite the clinical evidence, real-world evidence is needed to validate their safety and effectiveness. This study aims to evaluate the effects of weight loss and safety of enavogliflozin administration in patients with T2D in a real-world clinical setting over 24 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!