. Laser-treated surfaces for ventricular assist devices. . This work has scientific impact since it proposes a biofunctional surface created with laser processing in bioinert titanium. . Cardiovascular diseases are the world's leading cause of death. An especially debilitating heart disease is congestive heart failure. Among the possible therapies, heart transplantation and mechanical circulatory assistance are the main treatments for its severe form at a more advanced stage. The development of biomaterials for ventricular assist devices is still being carried out. Although polished titanium is currently employed in several devices, its performance could be improved by enhancing the bioactivity of its surface. . Aiming to improve the titanium without using coatings that can be detached, this work presents the formation of laser-induced periodic surface structures with a topology suitable for cell adhesion and neointimal tissue formation. The surface was modified by femtosecond laser ablation and cell adhesion was evaluated by using fibroblast cells. . The results indicate the formation of the desired topology, since the cells showed the appropriate adhesion compared to the control group. Scanning electron microscopy showed several positive characteristics in the cells shape and their surface distribution. The results obtained with different topologies point that the proposed LIPSS would provide enhanced cell adhesion and proliferation. . The laser processes studied can create new interactions in biomaterials already known and improve the performance of biomaterials for use in ventricular assist devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521651PMC
http://dx.doi.org/10.34133/2022/9782562DOI Listing

Publication Analysis

Top Keywords

ventricular assist
12
assist devices
12
cell adhesion
12
laser-treated surfaces
8
biomaterials ventricular
8
surface
5
surfaces vads
4
vads inert
4
titanium
4
inert titanium
4

Similar Publications

Objective: The objective was to evaluate the etiology, natural history, and impact of surgical intervention on outcomes of left ventricular assist device (LVAD) patients presenting with intracranial hemorrhage (ICH).

Methods: The authors completed a retrospective review of LVAD patients who presented with ICH at 2 centers between 2013 and 2022. Patients were reviewed for demographic, clinical, and radiographic variables.

View Article and Find Full Text PDF

Background: Imaging both electrical and mechanical cardiac function can better characterize cardiac disease and improve patient care. Currently, there is no noninvasive technique that can simultaneously image both electrical and mechanical function of the whole heart at the point of care. Here, our aim is to demonstrate that high volume-rate echocardiography can simultaneously map cardiac electromechanical activation and end-systolic cardiac strain of the whole heart in a single heartbeat.

View Article and Find Full Text PDF

Echocardiography is crucial for evaluating patients at risk of clinical deterioration. Left ventricular ejection fraction (LVEF) and velocity time integral (VTI) aid in diagnosing shock, but bedside calculations can be time-consuming and prone to variability. Artificial intelligence technology shows promise in providing assistance to clinicians performing point-of-care echocardiography.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is a complex and heterogeneous cardiac disorder, often complicated by cardiogenic shock, a life-threatening condition marked by severe cardiac output failure. Managing cardiogenic shock in HCM patients presents unique challenges due to the distinct pathophysiology of the disease, which includes dynamic left ventricular outflow tract obstruction, diastolic dysfunction, and myocardial ischemia. This review discusses current and emerging therapeutic strategies tailored to address the complexities of HCM-associated cardiogenic shock and other diseases with similar pathophysiology that provoke left ventricular outflow tract obstruction.

View Article and Find Full Text PDF

The Introduction of a New Mobile Driving Unit for a Ventricular Assist Device in a Pediatric Patient (EXCOR Active).

J Cardiovasc Dev Dis

December 2024

Pediatric Cardiovascular Surgery, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zurich, 8008 Zurich, Switzerland.

Pediatric patients supported by extracorporeal ventricular assist devices traditionally require long-term stationary inpatient settings. Limited mobility and permanent hospitalization significantly reduce their quality of life. Berlin Heart address this with their novel mobile driving unit, EXCOR Active.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!