Purpose: The accuracy of dose calculation is the prerequisite for CyberKnife (CK) to implement precise stereotactic body radiotherapy (SBRT). In this study, CK-MLC treatment planning for early-stage non-small cell lung cancer (NSCLC) were compared using finite-size pencil beam (FSPB) algorithm, FSPB with lateral scaling option (FSPB_LS) and Monte Carlo (MC) algorithms, respectively. We concentrated on the enhancement of accuracy with the FSPB_LS algorithm over the conventional FSPB algorithm and the dose consistency with the MC algorithm.

Methods: In this study, 54 cases of NSCLC were subdivided into central lung cancer (CLC, n=26) and ultra-central lung cancer (UCLC, n=28). For each patient, we used the FSPB algorithm to generate a treatment plan. Then the dose was recalculated using FSPB_LS and MC dose algorithms based on the plans computed using the FSPB algorithm. The resultant plans were assessed by calculating the mean value of pertinent comparative parameters, including PTV prescription isodose, conformity index (CI), homogeneity index (HI), and dose-volume statistics of organs at risk (OARs).

Results: In this study, most dose parameters of PTV and OARs demonstrated a trend of MC > FSPB_LS > FSPB. The FSPB_LS algorithm aligns better with the dose parameters of the target compared to the MC algorithm, which is particularly evident in UCLC. However, the FSPB algorithm significantly underestimated the does of the target. Regarding the OARs in CLC, differences in dose parameters were observed between FSPB and FSPB_LS for V of the contralateral lung, as well as between FSPB and MC for mean dose (D) of the contralateral lung and maximum dose (D) of the aorta, exhibiting statistical differences. There were no statistically significant differences observed between FSPB_LS and MC for the OARs. However, the average dose deviation between FSPB_LS and MC algorithms for OARs ranged from 2.79% to 11.93%. No significant dose differences were observed among the three algorithms in UCLC.

Conclusion: For CLC, the FSPB_LS algorithm exhibited good consistency with the MC algorithm in PTV and demonstrated a significant improvement in accuracy when compared to the traditional FSPB algorithm. However, the FSPB_LS algorithm and the MC algorithm showed a significant dose deviation in OARs of CLC. In the case of UCLC, FSPB_LS showed better consistency with the MC algorithm than observed in CLC. Notwithstanding, UCLC's OARs were highly sensitive to radiation dose and could result in potentially serious adverse reactions. Consequently, it is advisable to use the MC algorithm for dose calculation in both CLC and UCLC, while the application of FSPB_LS algorithm should be carefully considered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577380PMC
http://dx.doi.org/10.3389/fonc.2023.1215976DOI Listing

Publication Analysis

Top Keywords

fspb algorithm
24
fspb_ls algorithm
20
lung cancer
16
algorithm
16
dose
15
dose calculation
12
fspb_ls
12
algorithm dose
12
dose parameters
12
fspb
10

Similar Publications

Purpose: The accuracy of dose calculation is the prerequisite for CyberKnife (CK) to implement precise stereotactic body radiotherapy (SBRT). In this study, CK-MLC treatment planning for early-stage non-small cell lung cancer (NSCLC) were compared using finite-size pencil beam (FSPB) algorithm, FSPB with lateral scaling option (FSPB_LS) and Monte Carlo (MC) algorithms, respectively. We concentrated on the enhancement of accuracy with the FSPB_LS algorithm over the conventional FSPB algorithm and the dose consistency with the MC algorithm.

View Article and Find Full Text PDF

Accuracy analysis of different dose calculation algorithms for locally advanced pancreatic cancer stereotactic body radiotherapy.

J Cancer

September 2023

Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China.

The dose distribution in different optimization algorithm plans of stereotactic radiotherapy (SBRT) for locally advanced pancreatic cancer (LAPC) were compared and analyzed using monte carlo dose calculate algorithm (MC). A retrospective study analyzed 26 LAPC patients treated with SBRT. The SBRT plans were designed by raytracing (RT) and fine size pencil beam (FSPB) algorithms in the CyberKnife (CK) precision system, all of which met the requirements of clinical target dose and organ at risk (OAR).

View Article and Find Full Text PDF

Purpose: InCise™ multileaf collimator (MLC) was introduced for CyberKnife (CK) Robotic Radiosurgery System (CK-MLC) in 2015, and finite size pencil beam (FSPB) was the only available dose computation algorithm for treatment plans of CK-MLC system. The more advanced Monte Carlo (MC) dose calculation algorithm of lnCise™ was initially released in 2017 for the CK Precision™ treatment planning system (TPS) (v1.1) with new graphic processing unit (GPU) platform.

View Article and Find Full Text PDF

Purpose: In the previous treatment planning system (TPS) for CyberKnife (CK), multileaf collimator (MLC)-based treatment plans could be created only by using the finite-size pencil beam (FSPB) algorithm. Recently, a new TPS, including the FSPB with lateral scaling option (FSPB+) and Monte Carlo (MC) algorithms, was developed. In this study, we performed basic and clinical end-to-end evaluations for MLC-based CK tumor-tracking radiotherapy using the MC, FSPB+, and FSPB.

View Article and Find Full Text PDF

Novel Monte Carlo dose calculation algorithm for robotic radiosurgery with multi leaf collimator: Dosimetric evaluation.

Phys Med

November 2018

European Cyberknife Center Munich, Munich, Germany; University Hospital of Cologne, Department for Stereotaxy and Functional Neurosurgery, Cologne, Germany.

Purpose: At introduction in 2014, dose calculation for the first MLC on a robotic SRS/SBRT platform was limited to a correction-based Finite-Size Pencil Beam (FSPB) algorithm. We report on the dosimetric accuracy of a novel Monte Carlo (MC) dose calculation algorithm for this MLC, included in the Precision™ treatment planning system.

Methods: A phantom was built of one slab (5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!