In order to evaluate the reliability of the ID ICP-MS method for the measurement of magnesium, zinc, and copper in human serum, we investigated the traceability, precision, trueness, and uncertainty of the method. This method traces the contents of magnesium, zinc, and copper in human serum to the standard materials NIST SRM3131a, SRM3168a, and SRM3114 respectively, thus completing the traceability to SI unit. The repeatability of this method for measuring magnesium, zinc, and copper in the human serum reference material GBW09152 was found to be 0.2%, 0.7%, and 0.6% ( = 9), respectively. The measurement, when employed to measure the magnesium, zinc, and copper in standard materials, had caused a maximum deviation of less than 0.88%, 1.35%, and 1.15%, respectively. The measurement results are within the stated uncertainty range of standard materials. The expanded uncertainties were 0.2 mg·kg, 0.04 mg·kg, and 0.08 mg·kg ( = 2) for magnesium, zinc, and copper, respectively. Therefore, this method has high trueness, good reproducibility, and simple operation and is suitable for tracing the values of magnesium, zinc, and copper in human serum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578981 | PMC |
http://dx.doi.org/10.1155/2023/6612672 | DOI Listing |
In Vitro Model
December 2024
Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.
Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.
View Article and Find Full Text PDFPeerJ
January 2025
Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America.
The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.
View Article and Find Full Text PDFJ Food Sci Technol
January 2025
Grain Science and Technology Division, Defence Food Research Laboratory, Mysore, Karnataka 570011 India.
This study aimed to compare thirteen different varieties of hyacinth beans analyzedfor their nutritional and antinutritional constituents. The study classified HA-3, HA-4, and Kadale Avare as Lignosus varieties, while the remaining varieties Arka, Pusa, CO, and NS, were classified as Typicus. The protein content ranged from 19.
View Article and Find Full Text PDFCureus
December 2024
Physiotherapy and Physical Medicine, University of Dschang, Dschang, CMR.
Recurrent sports injuries present complex challenges that extend beyond the playing field, impacting athletes' physical well-being, mental resilience, and financial stability. This review outlines a comprehensive framework designed to prevent and manage these setbacks, empowering athletes to achieve sustained performance and recovery. This multidimensional issue requires an integrative approach encompassing physical rehabilitation, psychological resilience, and nutritional strategies.
View Article and Find Full Text PDFPathogens
January 2025
Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico.
The path to survival for pathogenic organisms is not straightforward. Pathogens require a set of enzymes for tissue damage generation and to obtain nourishment, as well as a toolbox full of alternatives to bypass host defense mechanisms. Our group has shown that the parasitic protist encodes for 14 sphingomyelinases (SMases); one of them (acid sphingomyelinase 6, aSMase6) is involved in repairing membrane damage and exhibits hemolytic activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!