The core idea behind precision medicine is to pinpoint the subpopulations that differ from one another in terms of disease risk, drug responsiveness, and treatment outcomes due to differences in biology and other traits. Biomarkers are found through genomic sequencing. Multi-dimensional clinical and biological data are created using these biomarkers. Better analytic methods are needed for these multidimensional data, which can be accomplished by using artificial intelligence (AI). An updated review of 80 latest original publications is presented on four main fronts-preventive medicine, medication development, treatment outcomes, and diagnostic medicine-All these studies effectively illustrated the significance of AI in precision medicine. Artificial intelligence (AI) has revolutionized precision medicine by swiftly analyzing vast amounts of data to provide tailored treatments and predictive diagnostics. Through machine learning algorithms and high-resolution imaging, AI assists in precise diagnoses and early disease detection. AI's ability to decode complex biological factors aids in identifying novel therapeutic targets, allowing personalized interventions and optimizing treatment outcomes. Furthermore, AI accelerates drug discovery by navigating chemical structures and predicting drug-target interactions, expediting the development of life-saving medications. With its unrivaled capacity to comprehend and interpret data, AI stands as an invaluable tool in the pursuit of enhanced patient care and improved health outcomes. It's evident that AI can open a new horizon for precision medicine by translating complex data into actionable information. To get better results in this regard and to fully exploit the great potential of AI, further research is required on this pressing subject.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577305 | PMC |
http://dx.doi.org/10.3389/fmed.2023.1227168 | DOI Listing |
JMIR Med Inform
January 2025
INSERM U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 30 Bd Jean Monnet, Nantes, 44093, France, 33 2 40 08 74 10.
Precision medicine involves a paradigm shift toward personalized data-driven clinical decisions. The concept of a medical "digital twin" has recently become popular to designate digital representations of patients as a support for a wide range of data science applications. However, the concept is ambiguous when it comes to practical implementations.
View Article and Find Full Text PDFScand J Trauma Resusc Emerg Med
January 2025
Department of Emergency Medicine, Lausanne University Hospital and University of Lausanne, 21 Rue du Bugnon, BH 09, 1011, Lausanne, Switzerland.
Background: The Abbreviated Injury Scale (AIS) and Injury Severity Score (ISS) grade the severity of injuries and are useful for trauma audit and benchmarking. However, AIS coding is complex and requires specifically trained staff. A simple yet reliable scoring system is needed.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
Background: The protein cereblon (CRBN) mediates the antileukemia effect of lenalidomide (Len). Len binds to CRBN, recruits IKZF1/IKZF3, and promotes their ubiquitination and degradation, through which Len exhibits its antileukemia and antimyeloma activity. Therefore, the protein level of CRBN might affect the antiproliferative effect of Len.
View Article and Find Full Text PDFBMC Cancer
January 2025
Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.
Background: People with malignancy of undefined primary origin (MUO) have a poor prognosis and may undergo a protracted diagnostic workup causing patient distress and high cancer related costs. Not having a primary diagnosis limits timely site-specific treatment and access to precision medicine. There is a need to improve the diagnostic process, and healthcare delivery and support for these patients.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, USA.
AI decision support systems can assist clinicians in planning adaptive treatment strategies that can dynamically react to individuals' cancer progression for effective personalized care. However, AI's imperfections can lead to suboptimal therapeutics if clinicians over or under rely on AI. To investigate such collaborative decision-making process, we conducted a Human-AI interaction study on response-adaptive radiotherapy for non-small cell lung cancer and hepatocellular carcinoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!