Quantum Otto and Carnot engines have recently been receiving attention due to their ability to achieve high efficiencies and powers based on the laws of quantum mechanics. This paper discusses the theory, progress, and possible applications of quantum Otto and Carnot engines, such as energy production, cooling, and nanoscale technologies. In particular, we investigate a two-spin Heisenberg system that works as a substance in quantum Otto and Carnot cycles while exposed to an external magnetic field with both Dzyaloshinsky-Moriya and dipole-dipole interactions. The four stages of engine cycles are subject to analysis with respect to the heat exchanges that occur between the hot and cold reservoirs, alongside the work done during each stage. The operating conditions of the heat engine, refrigerator, thermal accelerator, and heater are all achieved. Moreover, our results demonstrate that the laws of thermodynamics are strictly upheld and the Carnot cycle produces more useful work than that of the Otto cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.108.034106DOI Listing

Publication Analysis

Top Keywords

quantum otto
16
otto carnot
16
carnot engines
12
substance quantum
8
quantum
5
otto
5
carnot
5
comparative study
4
study quantum
4
engines powered
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!