Jammed packings of granular materials display complex mechanical response. For example, the ensemble-averaged shear modulus 〈G〉 increases as a power law in pressure p for static packings of soft spherical particles that can rearrange during compression. We seek to design granular materials with shear moduli that can either increase or decrease with pressure without particle rearrangements even in the large-system limit. To do this, we construct tessellated granular metamaterials by joining multiple particle-filled cells together. We focus on cells that contain a small number of bidisperse disks in two dimensions. We first study the mechanical properties of individual disk-filled cells with three types of boundaries: periodic boundary conditions (PBC), fixed-length walls (FXW), and flexible walls (FLW). Hypostatic jammed packings are found for cells with FLW, but not in cells with PBC and FXW, and they are stabilized by quartic modes of the dynamical matrix. The shear modulus of a single cell depends linearly on p. We find that the slope of the shear modulus with pressure λ_{c}<0 for all packings in single cells with PBC where the number of particles per cell N≥6. In contrast, single cells with FXW and FLW can possess λ_{c}>0, as well as λ_{c}<0, for N≤16. We show that we can force the mechanical properties of multicell granular metamaterials to possess those of single cells by constraining the end points of the outer walls and enforcing an affine shear response. These studies demonstrate that tessellated granular metamaterials provide a platform for the design of soft materials with specified mechanical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.108.034901 | DOI Listing |
Sci Rep
January 2025
Heilongjiang Ground Pressure and Gas Control in Deep Mining Key Laboratory, Heilongjiang University of Science and Technology, Harbin, 15002, China.
When underground tunnels in coal mines traverse geological structurally abnormal zones (faults, collapse columns, fractured zones, etc.), excavation-induced unloading leads to instability and failure of the engineering rock mass. Rock masses in fractured zones are in elastic, plastic, and post-peak stress states, and the process of excavation through these zones essentially involves unloading under full stress paths.
View Article and Find Full Text PDFFoods
December 2024
College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
A dysphagia diet is a special dietary programme. The development and design of foods for dysphagia should consider both swallowing safety and food nutritional quality. In this study, we investigated the rheological properties (viscosity, thixotropy, and viscoelasticity), textural properties, and swallowing behaviour of commercially available natural, pregelatinised, acetylated, and phosphorylated maize starch and tapioca starch.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
Asphalt modified with treated waste tires has good environmental protection and application value. However, the nano-modification mechanism of crumb rubber (CR) with asphalt is still unclear. This research investigates the mechanism, aging, and interfacial interaction with the aggregate of CR modification asphalt (CRMA).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil and Transportation Engineering, Hebei University of Technology, Xiping Road 5340, Tianjin 300401, China.
Waste slurry, a major by-product of urban construction, is produced in rapidly increasing volumes each year. Dehydrated waste slurry has potential as a roadbed material; however, its performance in freeze-thaw environments, which can induce frost heave and thaw settlement, and the mechanism of the influence of freeze-thaw cycles on its macro and micro properties are still unclear and need thorough investigation. This study explores the macroscopic and microscopic properties of waste slurry subjected to freeze-thaw cycles.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
State Key Laboratory of Chemical Safety, Qingdao 266000, China.
Polyurea (PUR) has been widely used as a protective coating in recent years. In order to complete the understanding of the relationship between PUR microstructure and its energy absorption capabilities, the mechanical and dynamic performance of PURs containing various macrodiol structural units were compared using material characterization techniques and molecular dynamic simulation. The results showed that the PUR polycarbonate diols formed as energy absorbing materials showed high tensile strength, high toughness, and excellent loss factor distribution based on the comparison of stress-strain tensile curves, glass transition temperatures, phase images, and dynamic storage loss modulus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!