Palladium (Pd) is widely used in catalyst, aerospace, and medical applications, but only 1% of its reserves are found in nature. So, the recovery of Pd(II) is very important. Natural fibers are a good adsorption material, and the abundant functional groups in bamboo shoot shell (BSS) fibers can form interactions with metal particles. However, few studies on Pd(II) adsorption using BSS fibers exist. In the present work, waste bamboo shoot shells were doped with titanium dioxide (TiO) particles, and the surface activation of BSS-TiO@CA by citric acid (CA) was carried out to prepare an efficient and recyclable adsorbent BSS-TiO@CA for the adsorption of Pd(II). The adsorption performance, adsorption mechanism, and regeneration performance of BSS-TiO@CA on Pd(II) were systematically analyzed by continuous adsorption experiments, characterization, and response surface method. It was found that the surface-activated waste bamboo shoot shells had an outstanding adsorption capacity of Pd(II), and the maximum adsorption rate of BSS-TiO@CA reached 85% with a maximum adsorption capacity (Q) of 175.74 mg/g. The functionalized use of waste bamboo shoot shells provides a new idea for the development of sustainable, cost-effective, and environmentally friendly adsorbents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-30377-z | DOI Listing |
Int J Biol Macromol
January 2025
School of Liquor and Food Engineering, Guizhou University, 550025 Guiyang, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China. Electronic address:
A previous study showed that the by-product of square bamboo shoot processing was rich in protein and contained many essential amino acids good for health. Bamboo shoot protein (BSP) had great potential as a naturally occurring functional protein. However, the utilization of single plant protein is limited due to its unstable degradation and reduced bio-activity in the gastrointestinal tract.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
Background: Non-structural carbohydrates (NSCs) are key substances for metabolic processes in plants, providing energy for growth, development, and responses to environmental stress. Pruning mother bamboo in a clump can significantly affect the NSCs allocation of new shoots, thereby affecting their growth. Moso bamboo (Phyllostachys edulis) is an important economic bamboo species with a highest planting area in China.
View Article and Find Full Text PDFFood Chem
January 2025
College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China; Wuhu Green Food Industry Research Institute Co., Ltd., 241000 Wuhu, China; Wuhu Hight Biotechnology Co., Ltd, 241000 Wuhu, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000 Wuhu, China. Electronic address:
Developing an effective method for extracting soluble dietary fiber (SDF) from bamboo shoot shell (BSS) is of great significance for the resource utilization of BSS. Here, we proposed the combinational strategy of steam explosion (SE), alkaline extraction (AE), and microbial extraction (ME) to enhance BSS-SDF yield. The highest yield of 28.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China.
Total leaf area per shoot () can reflect the photosynthetic capacity of a shoot. A prior study hypothesized that is proportional to the product of the sum of the individual leaf widths per shoot () and the maximum individual leaf length per shoot (), referred to as the Montgomery-Koyama-Smith equation (MKSE). However, empirical evidence does not support such a proportional relationship hypothesis, as was found to allometrically scale with , i.
View Article and Find Full Text PDFTree Physiol
January 2025
State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University, Lin'An 311300, China.
Lead (Pb) is a hazardous element that affects the growth and development of plants, while silicon (Si) is a beneficial element for alleviating the stress caused by heavy metals, including Pb. However, the mechanisms of Si reduce Pb accumulation in Moso bamboo remain unclear. In this study, physiological assessments and transcriptome analyses were conducted to investigate the interaction between Si and Pb.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!