Despite associations between urinary phthalates and respiratory symptoms and disorders have been investigated, knowledge about their impact on COPD incidence remains limited. Using data of 8242 adults (aged 20-80 years) from the 2007-2018 National Health and Nutrition Examination Survey (NHANES), the association of mixed urinary phthalate metabolites with COPD incidence was evaluated. Among them, 789 were COPD patients, and the rest were non-COPD participants. In the single-pollutant models, a variety of phthalate metabolites were identified as independent positive factors for COPD incidence, including mono-(carboxynonyl) phthalate (MCNP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-n-butyl phthalate (MnBP), mono-(3-carboxylpropyl) phthalate (MCPP), mono-ethyl phthalate (MEP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono-benzyl phthalate (MBzP). Multi-pollutant models, including weighted quantile sum (WQS) regression, quantile-based g computation (qgcomp), and Bayesian kernel machine regression (BKMR) approaches consistently revealed the positive association between phthalates co-exposure and COPD incidence, and MCPP was recognized as the dominant positive driver. The positive association was more evident in the youth group and the male group. The interactions between certain phthalate metabolites in COPD were also observed. Given the limitations of the cross-sectional design of NHANES study, well-designed longitudinal studies are needed to verify or disprove these findings.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-30334-wDOI Listing

Publication Analysis

Top Keywords

phthalate metabolites
16
copd incidence
16
phthalate
12
urinary phthalate
8
metabolites copd
8
positive association
8
copd
6
incidence
5
association
4
association urinary
4

Similar Publications

Di(2-ethylhexyl) phthalate (DEHP), a known endocrine-disrupting chemical, is a plasticizer found in many common consumer products. High levels of DEHP exposure have been linked to adverse pregnancy outcomes, yet little is known about how it affects human uterine functions. We previously reported that the estrogen-regulated transcription factor hypoxia-inducible factor 2 alpha (HIF2α) promotes the expression of Rab27b, which controls the trafficking and secretion of extracellular vesicles (EVs).

View Article and Find Full Text PDF

Associations of phthalate and phthalate alternative metabolites in urine with the risk of gallstones in adults: a cross-sectional analysis.

Environ Geochem Health

January 2025

Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China.

Article Synopsis
  • The study investigates whether phthalates and their alternatives are linked to the occurrence of gallstones, involving 1,735 NHANES participants.
  • Individual associations of specific phthalate metabolites (MCOCHP and MHNCH) were found to have a positive correlation with gallstones, particularly in older adults, men, and those with certain health conditions.
  • Findings indicate that both traditional phthalates and their alternatives elevate the risk of gallstones, with alternatives posing a greater risk, especially among vulnerable populations like the elderly and those with obesity, hypertension, or diabetes.
View Article and Find Full Text PDF

Neurodevelopmental toxicity and mechanism of action of monoethylhexyl phthalate (MEHP) in the developing zebrafish (Danio rerio).

Aquat Toxicol

December 2024

School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China. Electronic address:

Monoethylhexyl phthalate (MEHP) is the primary metabolite of di(2-ethylhexyl) phthalate (DEHP), the most prevalent phthalate plasticiser globally. It has been demonstrated that MEHP exerts more potent toxic effects than DEHP. Nevertheless, the full extent of the toxicity of MEHP to neurodevelopmental organisms remains unclear.

View Article and Find Full Text PDF

Phthalates are known endocrine disrupting chemicals and ovarian toxicants that are used widely in consumer products. Phthalates have been shown to exert ovarian toxicity on multiple endpoints, altering transcription of genes responsible for normal ovarian function. However, the molecular mechanisms by which phthalates act on the ovary are not well understood.

View Article and Find Full Text PDF

Maternal phthalates exposure promotes neural stem cell differentiation into phagocytic astrocytes and synapse engulfment via IRE1α/XBP1s pathway.

Cell Rep

January 2025

Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China. Electronic address:

Humans are widely exposed to phthalates, a common chemical plasticizer. Previous cohort studies have revealed that maternal exposure to monobutyl phthalate (MBP), a key metabolite of phthalates, is associated with neurodevelopmental defects. However, the molecular mechanism remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!