T cells expressing a mesothelin (MSLN)-specific T cell receptor fusion construct (TRuC), called TC-210, have demonstrated robust antitumor activity in preclinical models of mesothelioma, ovarian cancer, and lung cancer. However, they are susceptible to suppression by the programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) axis and lack intrinsic costimulatory signaling elements. To enhance the function of anti-MSLN TRuC-T cells, chimeric switch receptors (CSRs) have been designed to co-opt the immunosuppressive PD-1/PD-L1 axis and to deliver a CD28-mediated costimulatory signal. Here, we report that coexpression of the PD1-CD28 CSR in TRuC-T cells enhanced T cell receptor signaling, increased proinflammatory effector cytokines, decreased anti-inflammatory cytokines, and sustained effector function in the presence of PD-L1 when compared with TC-210. Anti-MSLN TRuC-T cells engineered to coexpress PD1-CD28 CSRs comprising the ectodomain of PD-1 and the intracellular domain of CD28 linked by the transmembrane domain of PD-1 were selected for integration into an anti-MSLN TRuC-T cell therapy product called TC-510. In vitro, TC-510 showed significant improvements in persistence and resistance to exhaustion upon chronic stimulation by tumor cells expressing MSLN and PD-L1 when compared with TC-210. In vivo, TC-510 showed a superior ability to provide durable protection following tumor rechallenge, versus TC-210. These data demonstrate that integration of a PD1-CD28 CSR into TRuC-T cells improves effector function, resistance to exhaustion, and prolongs persistence. Based on these findings, TC-510 is currently being evaluated in patients with MSLN-expressing solid tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10700406 | PMC |
http://dx.doi.org/10.1007/s00262-023-03556-7 | DOI Listing |
Front Immunol
January 2025
Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.
Introduction: Challenges remain in reducing antigen escape and tumor recurrence while CAR-T cell therapy has substantially improved outcomes in the treatment of multiple myeloma. T cell receptor fusion construct (TRuC)-T cells, which utilize intact T cell receptor (TCR)-CD3 complex to eliminate tumor cells in a non-major histocompatibility complex (MHC)-restricted manner, represent a promising strategy. Moreover, interleukin-7 (IL-7) is known to enhance the proliferation and survival of T cells.
View Article and Find Full Text PDFCell Rep
November 2024
School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Institute for Immunology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Changping Laboratory, Beijing 102206, China. Electronic address:
Eur J Immunol
November 2024
Signaling Research Centres BIOSS and CIBSS; Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
Recent years have witnessed the success of αβ T cells engineered to express chimeric antigen receptors (CARs) in treating haematological cancers. CARs combine the tumour antigen binding capability of antibodies with the signalling functions of the T-cell receptor (TCR) ζ chain and co-stimulatory receptors. Despite the success, αβ CAR T cells face limitations.
View Article and Find Full Text PDFCancer Immunol Immunother
December 2023
TCR2 Therapeutics, Inc., 100 Binney Street, Suite 710, Cambridge, MA, 02142, USA.
T cells expressing a mesothelin (MSLN)-specific T cell receptor fusion construct (TRuC), called TC-210, have demonstrated robust antitumor activity in preclinical models of mesothelioma, ovarian cancer, and lung cancer. However, they are susceptible to suppression by the programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) axis and lack intrinsic costimulatory signaling elements. To enhance the function of anti-MSLN TRuC-T cells, chimeric switch receptors (CSRs) have been designed to co-opt the immunosuppressive PD-1/PD-L1 axis and to deliver a CD28-mediated costimulatory signal.
View Article and Find Full Text PDFOncoimmunology
March 2023
Research & Development, TCR2 Therapeutics, Inc, Cambridge, MA, USA.
T cell Receptor (TCR) Fusion Construct (TRuC®) T cells harness all signaling subunits of the TCR to activate T cells and eliminate tumor cells, with minimal release of cytokines. While adoptive cell therapy with chimeric antigen receptor (CAR)-T cells has shown unprecedented clinical efficacy against B-cell malignancies, monotherapy with CAR-T cells has suboptimal clinical efficacy against solid tumors, probably because of the artificial signaling properties of the CAR. TRuC-T cells may address the suboptimal efficacy of existing CAR-T therapies for solid tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!