The demand for vehicular antennas increases in tandem with the need for multiple features in automobiles. The development of optically transparent antenna (OTA) has made it possible to deploy antennas on delicate surfaces such as glass. Earlier studies on OTA demonstrated its viability using materials such as transparent conducting oxides (TCO) and conductive polymers. A tri-band OTA is proposed in this paper for vehicular applications. The antenna operates at 1.8 GHz, 2.4 GHz and 3.39-12 GHz bands, covering automotive/wireless applications such as GSM, Bluetooth, Wi-Fi, vehicular communication and electronic toll collection. The proposed OTA is developed on soda lime glass, and the material TCO is used for the radiator and the ground plane. The antenna prototype is tested on windshield and in an anechoic chamber, the gain and efficiency are found to be greater than 1 dBi and 80%, respectively. Furthermore, a machine learning technique for vehicle classification is proposed, which could help in electronic toll collection, automatic vehicle identifier, and parking management applications. The presented algorithm achieves 80% classification accuracy with a minimum window size.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582041 | PMC |
http://dx.doi.org/10.1038/s41598-023-44475-y | DOI Listing |
J Ophthalmol
January 2025
Department of Ophthalmology, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo 0424, Norway.
Dry eye disease (DED) is a multifactorial disorder affecting millions worldwide. Inflammation plays a central role in DED. The aim of this review is to critically evaluate the literature concerning the efficacy and safety of lifitegrast, a small molecule immunomodulator that blocks the action of lymphocyte function-associated antigen-1.
View Article and Find Full Text PDFMRS Bull
November 2024
Bioelectronics & Bioenergy Research Lab, Centre for Functional Ecology-Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
Abstract: Filamentous cyanobacteria originate toxic harmful algal blooms (HABs) in aquatic ecosystems, severely impacting freshwater ecosystems and life. Despite being natural bloomers, these microorganisms are challenging to handle , due to the formation of aggregates with entangled filaments. Consequently, their precise growth dynamics, although vital to timely predict HABs, remains inaccessible.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Physics, Qingdao University, National Demonstration Center for Experiment Applied Physics Education (Qingdao University), Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center (Qingdao University), Qingdao 266071, China.
As promising optoelectronic functional materials in the short-wavelength spectral region, such as ultraviolet (UV) and deep UV, phosphates have recently received increased attention. However, phosphate materials commonly suffer from limited birefringence owing to the highly symmetrical PO tetrahedra. We herein report a layered tin(II) phosphate with improved birefringence.
View Article and Find Full Text PDFCureus
December 2024
Zebrafish Research Unit, Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed-to-be-University), Pondicherry, IND.
Low- and middle-income countries (LMICs) are increasingly challenged by the rising burden of medicolegal cases. Traditional forensic infrastructure and in vivo rodent models often have significant limitations due to high costs and ethical concerns. As a result, zebrafish () are gaining popularity as an attractive alternative model for LMICs because of their cost-effectiveness and practical advantages.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
Aiming at net-zero emissions, most international and national policies focus on sustainable development goals. Hence, there is an immediate need for replacing carbon-intensive materials with biomaterials. In this respect, this article presents a road-map for moving from polymeric to sustainable waveguides in optical devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!