AI Article Synopsis

  • Microchromosome maintenance (MCM) proteins, particularly MCM10, play a critical role in cancer development by influencing DNA replication processes, with MCM10 being overexpressed in many cancer types.
  • Research utilizing databases like GEPIA2, GTEx, and TCGA reveals that MCM10 expression is linked to clinical factors such as tumor dryness, immune responses, and genetic variations in cancers.
  • The findings suggest that MCM10 could serve as a valuable biomarker for various cancers and may lead to new therapeutic strategies targeting this protein.

Article Abstract

Microchromosome maintenance (MCM) proteins are a number of nuclear proteins with significant roles in the development of cancer by influencing the process of cellular DNA replication. Of the MCM protein family, MCM10 is a crucial member that maintains the stability and extension of DNA replication forks during DNA replication and is significantly overexpressed in a variety of cancer tissues, regulating the biological behaviour of cancer cells. But little is understood about MCM10's functional role and regulatory mechanisms in a range of malignancies. We investigate the impact of MCM10 in human cancers by analyzing data from databases like the Gene Expression Profiling Interaction Analysis (GEPIA2), Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA), among others. Possible relationships between MCM10 and clinical staging, diagnosis, prognosis, Mutation burden (TMB), microsatellite instability (MSI), immunological checkpoints, DNA methylation, and tumor stemness were identified. The findings demonstrated that MCM10 expression was elevated in the majority of cancer types and was connected to tumor dryness, immunocytic infiltration, immunological checkpoints, TMB and MSI. Functional enrichment analysis in multiple tumors also identified possible pathways of MCM10 involvement in tumorigenesis. We also discovered promising MCM10-targeting chemotherapeutic drugs. In conclusion, MCM10 may be a desirable pan-cancer biomarker and offer fresh perspectives on cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582070PMC
http://dx.doi.org/10.1038/s41598-023-44946-2DOI Listing

Publication Analysis

Top Keywords

dna replication
12
immunological checkpoints
8
mcm10
7
cancer
6
mcm10 potential
4
potential diagnostic
4
diagnostic immunological
4
immunological prognostic
4
prognostic biomarker
4
biomarker pan-cancer
4

Similar Publications

Mitochondrial retrograde signaling (MRS) pathways relay the functional status of mitochondria to elicit homeostatic or adaptive changes in nuclear gene expression. Budding yeast have "intergenomic signaling" pathways that sense the amount of mitochondrial DNA (mtDNA) independently of oxidative phosphorylation (OXPHOS), the primary function of genes encoded by mtDNA. However, MRS pathways that sense the amount of mtDNA in mammalian cells remain poorly understood.

View Article and Find Full Text PDF

The role of N-methyladenosine (mA) mRNA modifications in herpesvirus infections.

J Virol

January 2025

Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

Herpesviruses, a family of large enveloped DNA viruses, establish persistent infections in a wide range of hosts. This characteristic requires an intricate network of interactions with their hosts and host cells. In recent years, the interplay between herpesviruses and the epitranscriptome-chemical modifications in transcripts that may affect mRNA biology and fate-has emerged as a novel aspect of herpesvirus-host interactions.

View Article and Find Full Text PDF

Unlabelled: APOBEC3 proteins (A3s) play an important role in host innate immunity against viruses and DNA mutations in cancer. A3s-induced mutations in both viral and human DNA genomes vary significantly from non-lethal mutations in viruses to localized hypermutations, such as kataegis in cancer. How A3s are regulated remains largely unknown.

View Article and Find Full Text PDF

SUMMARYHuman papillomaviruses (HPVs) are small DNA viruses that are responsible for significant disease burdens worldwide, including cancers of the cervix, anogenital tract, and oropharynx. HPVs infect stratified epithelia at a variety of body locations and link their productive life cycles to the differentiation of the host cell. These viruses have evolved sophisticated mechanisms to exploit cellular pathways, such as DNA damage repair (DDR), to regulate their life cycles.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Hepatitis B virus (HBV) is the main pathogen for HCC development. HBV covalently closed circular DNA (cccDNA) forms extra-host chromatin-like minichromosomes in the nucleus of hepatocytes with host histones, non-histones, HBV X protein (HBx) and HBV core protein (HBc).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!