Modified mesoporous NH-Zr-BTC mixed ligand MOF nanocomposites were synthesized via the hydrothermal method as a novel adsorbent for CO capture. The newly modified MOF-808 with NH demonstrated a similar mesoporous morphology as MOF-808, whereas the specific surface area, pore volume, and average particle size, respectively, increased by 15%, 6%, and 46% compared to those of MOF-808. The characterization analyses exhibited the formation of more active groups on the adsorbent surface after modification. In addition, a laboratory adsorption setup was used to evaluate the effect of temperature, pressure, and NH content on the CO adsorption capacity in the range of 25-65 °C, 1-9 bar, and 0-20 wt%, respectively. An increase in pressure and a decrease in temperature enhanced the adsorption capacity. The highest equilibrium adsorption capacity of 369.11 mg/g was achieved at 25 °C, 9 bar, and 20 wt% NH. By adding 20 wt% NH, the maximum adsorption capacity calculated by the Langmuir model increased by about 4% compared to that of pure MOF-808. Moreover, Ritchie second-order and Sips models were the best-fitted models to predict the kinetics and isotherm data of CO adsorption capacity with the high correlation coefficient (R > 0.99) and AARE% of less than 0.1. The ΔH°, ΔS°, and ΔG° values were - 17.360 kJ/mol, - 0.028 kJ/mol K, and - 8.975 kJ/mol, respectively, demonstrating a spontaneous, exothermic, and physical adsorption process. Furthermore, the capacity of MH-20% sample decreased from 279.05 to 257.56 mg/g after 15 cycles, verifying excellent stability of the prepared mix-ligand MOF sorbent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582194 | PMC |
http://dx.doi.org/10.1038/s41598-023-44076-9 | DOI Listing |
Nanomicro Lett
January 2025
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.
Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired.
View Article and Find Full Text PDFNanoscale
January 2025
College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
High salinity in wastewater often hampers the performance of traditional adsorbents by disrupting electrostatic interactions and ion exchange processes, limiting their efficiency. This study addresses these challenges by investigating the salt-promoted adsorption of Cu ions onto amino-functionalized chloromethylated polystyrene (EDA@CMPS) millispheres. The adsorbent was synthesized by grafting ethylenediamine (EDA) onto CMPS, which significantly improved Cu adsorption, achieving nearly three times the capacity in saline solutions (1.
View Article and Find Full Text PDFLangmuir
January 2025
Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, GR-65404 Kavala, Greece.
The remediation of wastewaters contaminated with dyes (discharged mainly from industry) is very important for preserving environmental quality and human health. In this study, a new composite chitosan (CS)-based adsorbent combined with activated carbon (AC) and curcumin (Cur) (abbreviated hereafter as CS/AC@Cur) in three different ratios (12.5%, 25%, and 50%) was synthesized for the removal of anionic [reactive black 5 (RB5)] and cationic [methylene blue (MB)] dyes in single-component or binary systems.
View Article and Find Full Text PDFRSC Adv
January 2025
Dipartimento di Scienze e Innovazione Tecnologica, Università Del Piemonte Orientale A. Avogadro Viale T. Michel 11 15121 Alessandria Italy
A novel synthesis of a nanometric MCM-41 from biogenic silica obtained from rice husk is here presented. CTABr and Pluronic F127 surfactants were employed as templating agents to promote the formation of a long-range ordered 2D-hexagonal structure with cylindrical pores and to limit the particle growth at the nanoscale level thus resulting in a material with uniform particle size of 20-30 nm. The physico-chemical properties of this sample (RH-nanoMCM) were investigated through a multi-technique approach, including PXRD, Si MAS NMR, TEM, -potential and N physisorption analysis at 77 K.
View Article and Find Full Text PDFThis work aimed at addressing the problem of hexavalent chromium pollution in the water environment, designing and preparing the Cu/CuO/NH-MIL-88B (Fe) heterojunction material with NH-MIL-88B (Fe) as the carrier, Cu/CuO was loaded on NH-MIL-88B (Fe) by light-assisted reduction. The loading of CuO effectively improves the visible light absorption capacity of the composite material. The SPR effect of Cu improves the separation and transfer of photogenerated carriers in the composite material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!