A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neo-intline: integrated pipeline enables neoantigen design through the in-silico presentation of T-cell epitope. | LitMetric

Neo-intline: integrated pipeline enables neoantigen design through the in-silico presentation of T-cell epitope.

Signal Transduct Target Ther

Laboratory of Molecular Medicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji Hospital, Tongji University Suzhou Institute, Tongji University, Shanghai, China.

Published: October 2023

Neoantigen vaccines are one of the most effective immunotherapies for personalized tumour treatment. The current immunogen design of neoantigen vaccines is usually based on whole-genome sequencing (WGS) and bioinformatics prediction that focuses on the prediction of binding affinity between peptide and MHC molecules, ignoring other peptide-presenting related steps. This may result in a gap between high prediction accuracy and relatively low clinical effectiveness. In this study, we designed an integrated in-silico pipeline, Neo-intline, which started from the SNPs and indels of the tumour samples to simulate the presentation process of peptides in-vivo through an integrated calculation model. Validation on the benchmark dataset of TESLA and clinically validated neoantigens illustrated that neo-intline could outperform current state-of-the-art tools on both sample level and melanoma level. Furthermore, by taking the mouse melanoma model as an example, we verified the effectiveness of 20 neoantigens, including 10 MHC-I and 10 MHC-II peptides. The in-vitro and in-vivo experiments showed that both peptides predicted by Neo-intline could recruit corresponding CD4 T cells and CD8 T cells to induce a T-cell-mediated cellular immune response. Moreover, although the therapeutic effect of neoantigen vaccines alone is not sufficient, combinations with other specific therapies, such as broad-spectrum immune-enhanced adjuvants of granulocyte-macrophage colony-stimulating factor (GM-CSF) and polyinosinic-polycytidylic acid (poly(I:C)), or immune checkpoint inhibitors, such as PD-1/PD-L1 antibodies, can illustrate significant anticancer effects on melanoma. Neo-intline can be used as a benchmark process for the design and screening of immunogenic targets for neoantigen vaccines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582007PMC
http://dx.doi.org/10.1038/s41392-023-01644-9DOI Listing

Publication Analysis

Top Keywords

neoantigen vaccines
16
neo-intline
5
neoantigen
5
neo-intline integrated
4
integrated pipeline
4
pipeline enables
4
enables neoantigen
4
neoantigen design
4
design in-silico
4
in-silico presentation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!