A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Experimental validation in a neutron exposure frame of the MINAS TIRITH for cell damage simulation. | LitMetric

Experimental validation in a neutron exposure frame of the MINAS TIRITH for cell damage simulation.

Phys Med Biol

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, PSE-SANTE/SERAMED/LRAcc, PSE-SANTE/SDOS/LMDN, BP 17, F-92262 Fontenay-aux-Roses, France.

Published: November 2023

In the domains of medicine and space exploration, refining risk assessment models for protecting healthy tissue from ionizing radiation is crucial. Understanding radiation-induced effects requires biological experimentations at the cellular population level and the cellular scale modeling using Monte Carlo track structure codes. We present MINAS TIRITH, a tool using Geant4-DNA Monte Carlo-generated databases to study DNA damage distribution at the cell population scale. It introduces a DNA damage location module and proposes a method to convert double-strand breaks (DSB) into DNA Damage Response foci. We evaluate damage location precision and DSB-foci conversion parameters. MINAS TIRITH's accuracy is validated against-H2AX foci distribution from cell population exposed to monoenergetic neutron beams (2.5 or 15.1 MeV) under different configurations, yielding mixed radiation fields. Strong agreement between simulation and experimental results was found demonstrating MINAS TIRITH's predictive precision in radiation-induced DNA damage topology. Additionally, modeling intercellular damage variability within a population subjected to a specific macroscopic dose identifies subpopulations, enhancing realistic fate models. This approach advances our understanding of radiation-induced effects on cellular systems for risk assessment improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ad043dDOI Listing

Publication Analysis

Top Keywords

dna damage
16
minas tirith
8
risk assessment
8
understanding radiation-induced
8
radiation-induced effects
8
distribution cell
8
cell population
8
damage location
8
minas tirith's
8
damage
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!