The aim of this study was to evaluate the effect of film-forming polymer solutions of different concentrations and pH values, either associated or not with sodium fluoride (F; 225 ppm F-), when applied during the initial stage of salivary pellicle formation, to prevent the dissolution of hydroxyapatite (HA), which was determined by the pH-stat method. Polyacrylic acid (PA), chitosan, sodium linear polyphosphate (LPP), polyvinyl methyl ether/maleic anhydride (PVM/MA), and propylene glycol alginate (PGA) were tested in three concentrations (lower, medium, and higher), two pH values (native or adjusted), and either associated or not with F. Distilled water, F, and stannous ion+fluoride (Sn/F; 225 ppm F- and 800 ppm Sn2+, as SnCl2) solutions were the controls, totalizing 63 groups. HA crystals were pretreated with human saliva for 1 min to allow pellicle formation, then immersed in the experimental solutions (1 min), and exposed to saliva for another 28 min. Subsequently, they were added to a 0.3% citric acid solution (pH = 3.8), connected to a pH-stat system that added aliquots of 28 μL 0.1 N HCl for a total reaction time of 5 min. Data were analyzed with one-way ANOVA and Tukey's tests (α = 0.05). For PA alone, the concentrations of 0.1% (native pH), 0.06%, and 0.08% (both pH adjusted) showed significantly lower HA dissolution than the negative control. PA concentrations of 0.1% and 0.08%, of both pH values, improved the effect of F against HA dissolution to a near-identical value as Sn/F. All solutions containing chitosan and LPP significantly reduced HA dissolution in comparison with the control. For chitosan, the concentration of 0.5% (in both pH values) improved the effect of F. LPP at 0.5% (native pH) and all associations of LPP with F outperformed the effect of F. Some PVM/MA solutions significantly reduced HA dissolution but PVM/MA could not improve the protection of F. PGA was incapable of reducing HA dissolution or improving F effect. It was concluded that chitosan, LPP, and some PA and PVM/MA solutions used alone were capable of reducing HA dissolution. Only PA, chitosan, and LPP were able to enhance fluoride protection, but for PA and chitosan, this was influenced by the polymer concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000533546DOI Listing

Publication Analysis

Top Keywords

chitosan lpp
12
dissolution
8
225 ppm
8
pellicle formation
8
saliva min
8
concentrations 01%
8
values improved
8
reduced dissolution
8
pvm/ma solutions
8
reducing dissolution
8

Similar Publications

Polymer-Based Toothpastes and Their Ability in Control Tooth Extrinsic Stain.

J Esthet Restor Dent

December 2024

Department of Restorative Dentistry, University of São Paulo, School of Dentistry, São Paulo, São Paulo, Brazil.

Objectives: To synthesize experimental toothpastes (ETs) containing four different polymers (sodium linear polyphosphate [LPP]; chitosan [CHI]; sodium hexametaphosphate [HMP]; and sodium pyrophosphate [PP]) and test their ability in preventing and removing tooth extrinsic stain.

Methods: The tooth specimens were randomly assigned into six groups (n = 10): control (artificial saliva), regular toothpaste (RT-no whitening claim), ET 5% LPP, ET 0.5% CHI, ET 5% HMP, and ET 5% PP.

View Article and Find Full Text PDF

Background: Stress urinary incontinence (SUI) is a widespread condition affecting more than 200 million people worldwide. Common treatments for this condition include retropubic colposuspension, and pelvic sling methods, which use autologous grafts or synthetic materials to support the bladder neck and urethral sphincter. Although these treatments have a cure rate of over 80%, adverse effects and recurrence may still occur.

View Article and Find Full Text PDF

Coupling atmospheric-pressure low-temperature plasmas to electrochemical reactors enables the generation of highly reactive species at plasma-liquid interfaces. This type of plasma electrochemical reactor (PEC) has been used to synthesize fluorescent nitrogen-doped graphene quantum dots (NGQDs), which are usable for multifunctional applications in a facile, simple, and sustainable way. However, the synthesis mechanism remains poorly understood, as well as the location of synthesis.

View Article and Find Full Text PDF

The aim of this study was to evaluate the effect of film-forming polymer solutions of different concentrations and pH values, either associated or not with sodium fluoride (F; 225 ppm F-), when applied during the initial stage of salivary pellicle formation, to prevent the dissolution of hydroxyapatite (HA), which was determined by the pH-stat method. Polyacrylic acid (PA), chitosan, sodium linear polyphosphate (LPP), polyvinyl methyl ether/maleic anhydride (PVM/MA), and propylene glycol alginate (PGA) were tested in three concentrations (lower, medium, and higher), two pH values (native or adjusted), and either associated or not with F. Distilled water, F, and stannous ion+fluoride (Sn/F; 225 ppm F- and 800 ppm Sn2+, as SnCl2) solutions were the controls, totalizing 63 groups.

View Article and Find Full Text PDF

In this work, () isolated from mice feces (LP-M) and pickles (LP-P) were chosen as the endogenous and exogenous , respectively, which were separately combined with chitosan oligosaccharides (COS) to be synbiotics. The anti-inflammatory activity of LP-M, LP-P, COS, and the synbiotics was explored using dextran-sodium-sulfate (DSS)-induced acute colitis mice, as well as by comparing the synergistic effects of COS with LP-M or LP-P. The results revealed that , COS, and the synbiotics alleviated the symptoms of mice colitis and inhibited the changes in short-chain fatty acids (SCFAs), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-10, and myeloperoxidase (MPO) caused by DSS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!