A comprehensive framework for eco-environmental impact evaluation of wastewater treatment plants: Integrating carbon footprint, energy footprint, toxicity, and economic assessments.

J Environ Manage

Department of Science and Biotechnology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169-13798, Iran. Electronic address:

Published: December 2023

The need for clear and straightforward guidelines for carbon footprint (CFP) and energy footprint (EFP) evaluations is critical due to the non-transparent and misleading results that have been reported. This study aims to address this gap by integrating CFP, EFP, toxicity, and economic assessments to evaluate the eco-environmental impacts of wastewater treatment plants (WWTPs). The results indicate that the total CFP was below 0.6 kg CO/kg COD removed, which is attributed to CO offset and biogas recovery. However, site-specific EFP varied considerably from 482.7 to 2294 kgCO/kWh due to design differences of WWTPs and their aeration and mixing energy demand (46.96-66.1%). The use of crude oil and natural gas for electricity generation significantly increased EFP, CFP, and carcinogenic human toxicity. In contrast, a combined heat and power (CHP) installation enabled energy recovery ranging from 12.09% to 65.65%. Construction costs dominated the highest share of total costs (85.43%), with indirect construction costs (42.9%) and operation labor costs (61.4%) being the primary elements in the total net costs. It is worth noting that site-specific CO emission factors were used in the calculations to decrease model uncertainty. However, to improve modeling reliability, we recommend modifying the regional CO emission factor and focusing on emerging technologies to recover energy and biogas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.119255DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
8
treatment plants
8
carbon footprint
8
energy footprint
8
toxicity economic
8
economic assessments
8
construction costs
8
energy
5
costs
5
comprehensive framework
4

Similar Publications

New insights into freshwater ascomycetes: discovery of novel species in diverse aquatic habitats.

Front Cell Infect Microbiol

January 2025

Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.

During investigations of freshwater fungi in Hunan and Yunnan provinces, China, sp. nov. (Nectriaceae), sp.

View Article and Find Full Text PDF

Hospital wastewater (HWW) is a major pollutant that presents significant risks to both environmental and human health. In this study, we developed a novel, inexpensive and highly antibacterial magnetic nanocomposite composed of FeO nanoparticles synthesised from spent pickling liquors, coated with chitosan and then integrated with polyhexamethylene guanidine hydrochloride (FeO@CS@PHMG) using sodium tripolyphosphate (TPP) as a crosslinking agent. The obtained results revealed that the synthesised nanocomposite exhibited high antibacterial activity against and .

View Article and Find Full Text PDF

Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs).

View Article and Find Full Text PDF

Prairie wetland ponds on the Great Plains of North America offer a diverse array of geochemical scenarios that can be informative about their impact on microbial communities. These ecosystems offer invaluable ecological services while experiencing significant stressors, primarily through drainage and climate change. In this first study systematically combining environmental conditions with microbial community composition to identify various niches in prairie wetland ponds, sediments had higher microbial abundance but lower phylogenetic diversity in ponds with lower concentrations of dissolved organic carbon ([DOC]; 10-18 mg/L) and sulfate ([SO ]; 37-58 mg/L) in water.

View Article and Find Full Text PDF

Forest Soil pH and Dissolved Organic Matter Aromaticity Are Distinct Drivers for Soil Microbial Community and Carbon Metabolism Potential.

Microb Ecol

January 2025

State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.

The ecological niche separation of microbial interactions in forest ecosystems is critical to maintaining ecological balance and biodiversity and has yet to be comprehensively explored in microbial ecology. This study investigated the impacts of soil properties on microbial interactions and carbon metabolism potential in forest soils across 67 sites in China. Using redundancy analysis and random forest models, we identified soil pH and dissolved organic matter (DOM) aromaticity as the primary drivers of microbial interactions, representing abiotic conditions and resource niches, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!