We developed a fluorescent aptasensor for label-free detection of ochratoxin A (OTA) based on TdT- and DNA polymerase-assisted multisite strand displacement amplification. This aptasensor exhibits good specificity and high sensitivity with a limit of detection (LOD) of 0.18 ng mL, and it can be further applied for the accurate quantification of OTA in complex real samples, holding promising applications in the field of food safety.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cc04746fDOI Listing

Publication Analysis

Top Keywords

fluorescent aptasensor
8
multisite strand
8
strand displacement
8
displacement amplification
8
label-free detection
8
detection ochratoxin
8
target-initiated fluorescent
4
aptasensor based
4
based multisite
4
amplification label-free
4

Similar Publications

A CRISPR/Cas12a-based competitive aptasensor for ochratoxin A detection.

Anal Methods

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

The serious contamination of ochratoxin A (OTA) in agricultural products has promoted the development of rapid, sensitive, and selective analytical methods for OTA monitoring. We demonstrated a competitive aptasensor for OTA detection using CRISPR/Cas12a as an effective signal amplifier. OTA competes with complementary DNA of the aptamer on the microplate to bind to the aptamer.

View Article and Find Full Text PDF

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Machine learning-assisted washing-free detection of extracellular vesicles by target recycling amplification based fluorescent aptasensor for accurate diagnosis of gastric cancer.

Talanta

January 2025

Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu Province, 210008, China.

Extracellular vesicles (EVs) are promising non-invasive biomarkers for cancer diagnosis. EVs proteins play a critical role in tumor progress and metastasis. However, accurately and reliably diagnosing cancers is greatly limited by single protein marker on EVs.

View Article and Find Full Text PDF

Fluorescence sensing is widely used in in vitro detection due to its high sensitivity and rapid result delivery. However, detection systems based on nanomaterials involving complex and cumbersome purification steps can lead to sample loss and significantly reduce the accuracy of the results. To address this issue, we proposed a lanthanide-based aptasensor featuring the target-triggered antenna effect to significantly enhance the time-resolved luminescence (TRL) of chelated Tb combined with a wash-free strategy.

View Article and Find Full Text PDF

As a Group 2B carcinogen, accurate and efficient detection for Fumonisin B1 (FB1) is essential. The emergence of aptamers presents a viable solution to meet this demand. In this study, a truncated aptamer named Apt40 was developed, showcasing remarkable binding affinity to FB1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!