Disinfection byproducts (DBPs) in drinking water are mainly exposed to the human body after oral ingestion and degradation in the gastrointestinal tract. The role of gastrointestinal degradation in the toxic effects of DBPs still needs further investigation. In this study, the degradation of five categories of DBPs (22 DBPs) in the stomach and small intestine was investigated based on a semicontinuous steady-state gastrointestinal simulation system, and 22 DBPs can be divided into three groups based on their residual proportions. The degradation of chloroacetonitrile (CAN), dibromoacetic acid (DBAA), and tetrabromopyrrole (FBPy) was further analyzed based on the Simulator of the Human Intestinal Microbial Ecosystem inoculating the gut microbiota, and approximately 60% of CAN, 45% of DBAA, and 80% of FBPy were degraded in the stomach and small intestine, followed by the complete degradation of remaining DBPs in the colon. Meanwhile, gastrointestinal degradation can reduce oxidative stress-mediated DNA damage and apoptosis induced by DBPs in DLD-1 cells, but the toxicity of DBPs did not disappear with the complete degradation of DBPs, possibly because of their interferences on gut microbiota. This study provides new insights into investigating the gastrointestinal toxic effects and mechanisms of DBPs through oral exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.3c04483 | DOI Listing |
JCO Precis Oncol
January 2025
Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA.
Purpose: Fibroblast growth factor receptor 2 isoform IIIb (FGFR2b) protein overexpression is an emerging biomarker in gastric cancer and gastroesophageal junction cancer (GC). We assessed FGFR2b protein overexpression prevalence in nearly 3,800 tumor samples as part of the prescreening process for a global phase III study in patients with newly diagnosed advanced or metastatic GC.
Methods: As of June 28, 2024, 3,782 tumor samples from prescreened patients from 37 countries for the phase III FORTITUDE-101 trial (ClinicalTrials.
Annu Rev Pathol
January 2025
MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA; email:
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Zoophysiology, Department of Biology, Aarhus University, Aarhus C, Denmark.
Aim: Snakes exhibit remarkable physiological shifts when their large meals induce robust postprandial growth after prolonged fasting. To understand the regulatory mechanisms underlying this rapid metabolic transition, we examined the regulation of protein synthesis in pythons, focusing on processes driving early postprandial tissue remodeling and growth.
Methods: Using the SUnSET method with puromycin labeling, we measured in vivo protein synthesis in fasting and digesting snakes at multiple post-feeding intervals.
J Cell Mol Med
January 2025
Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China.
The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
Importance: The D842V platelet-derived growth factor receptor α (PDGFRA) mutation identifies a molecular subgroup of gastrointestinal stromal tumors (GISTs), primarily resistant to standard tyrosine kinase inhibitors and with an overall more indolent behavior. Although functional imaging with 18F-fluorodeoxyglucose-labeled positron emission tomography ([18F]FDG-PET) plays a proven role in GISTs, especially in early assessment of tumor response, less is known about [18F]FDG uptake according to the GIST molecular subtypes.
Objective: To evaluate the degree of [18F]FDG uptake in PDGFRA-mutant GISTs and better define the role of functional imaging in this rare and peculiar subset of GISTs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!