Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human health is adversely affected by exposure to organophosphate (OP) pesticides. This study aims to investigate the correlation between urinary OP metabolites and the prevalence of asthma. In cross-sectional studies, data from the National Health and Nutrition Examination Survey (NHANES) projects conducted between 2003-2008, 2011-2012, and 2015-2018 were analyzed. Multiple logistic regressions and restricted cubic spline (RCS) regressions were utilized to examine the relationship between four urinary OP metabolites, namely dimethyl phosphate (DMP), diethyl phosphate (DEP), dimethyl phosphorothioate (DMTP), and diethyl phosphorothioate (DETP), and the prevalence of asthma. Additionally, quantile g-computation (QG-C) regression was employed to evaluate the association between urinary OP metabolites (both individual and combined exposures) and asthma prevalence. The results showed that a total of 9316 adults, including 1298 participants with asthma, were included in the analysis. The median age of the participants was 47.37 years, and 50.27% were female. In the comprehensive model, the third tertile of DMP and DEP exhibited a positive association with asthma prevalence compared to the first tertile (odds ratio [95% confidence interval]: 1.26 [1.01-1.57], P = 0.036; and 1.25 [1.07-1.51], P = 0.008, respectively). Moreover, a linear relationship was observed between DMP, DEP, and asthma prevalence (P for nonlinearity = 0.320 and 0.553, respectively). The QG-C regression revealed a positive association between the mixture of urinary OP metabolites and asthma prevalence (OR = 1.04 [1.01-1.07], P = 0.025), with DEP contributing the most substantial effect (weight = 0.564). Our findings suggest that exposure to OP pesticides is associated with an increased prevalence of asthma, with DEP demonstrating the strongest impact.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-30174-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!