Background: Currently, over 2 billion people worldwide suffer from obesity, which poses a serious health risk. More and more attention is being given to the effects of trace elements on obesity in recent years. Synergistic or antagonistic interactions among these elements can adversely or positively impact human health. However, epidemiological evidence on the relationship between trace element exposure levels and obesity has been inconclusive.

Methods: Baseline data of 994 participants from the Cohort of Elderly Health and Environment Controllable Factors were used in the present study. ICP-MS was used to measure the concentrations of 10 trace elements in the whole blood of the older population. Binary logistic regression, restricted cubic splines (RCS) models, and Bayesian kernel machine regression (BKMR) models were employed to assess single, nonlinear, and mixed relationships between 10 trace element levels and three types of obesity based on body mass index (BMI), waist circumference (WC), and body fat percentage (BFP) in the elderly.

Results: Based on BMI, WC and BFP, 51.8% of the included old population were defined as general overweight/obesity, 67.1% as abdominal obesity, and 36.2% as having slightly high/high BFP. After multivariable adjustment, compared with the lowest tertile, the highest tertile of blood selenium (Se) concentration was associated with an increased risk of all three types of obesity. Additionally, compared with the lowest tertile, higher tertiles of strontium (Sr) concentrations were associated with a lower risk of general overweight/obesity and having slightly high/high BFP, and the highest tertile of barium (Ba) was associated with a lower risk of having slightly high BFP, while higher tertiles of arsenic (As) concentrations were associated with an increased risk of having slightly high/high BFP, and the highest tertile of manganese (Mn) was associated with a higher risk of abdominal obesity. BKMR analyses showed a strong linear positive association between Se and three types of obesity. Higher blood levels of trace element mixture were associated with increased obesity risks in a dose-response pattern, with Se having the highest value of the posterior inclusion probability (PIP) within the mixture.

Conclusions: In this study, we found higher Se levels were associated with an elevated risk of obesity and high levels of Ba, Pb and Cr were associated with a decreased risk of obesity. Studies with larger samples are needed to confirm these findings.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-023-01747-wDOI Listing

Publication Analysis

Top Keywords

trace element
16
three types
16
types obesity
16
obesity
12
high/high bfp
12
highest tertile
12
associated increased
12
risk
9
element levels
8
risk three
8

Similar Publications

Coffee is a popular beverage with significant commercial and social importance. The study aimed to determine the fatty acids profile, volatile compounds, and concentration of major and trace elements (Na, Mg, K, Ca, P, S, Fe, Mn, Cu, Zn, Cr, Ni, Cd, and Pb) in the two most important varieties of coffee, namely arabica and robusta. The leaching percentages of mineral elements and the effect of boiling time on the transfer of elements to aqueous extracts were also determined.

View Article and Find Full Text PDF

In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.

View Article and Find Full Text PDF

An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P-type heavy-metal ATPases (HMAs), PhHMA5II1.

View Article and Find Full Text PDF

Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.

View Article and Find Full Text PDF

A wearable electrochemical sensor utilizing multifunctional hydrogel for antifouling ascorbic acid quantification in sweat.

Anal Chim Acta

February 2025

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:

The accurate and reliable quantification of the levels of disease markers in human sweat is of significance for health monitoring through wearable sensing technology, but the sensors performed in real sweat always suffer from biofouling that cause performance degradation or even malfunction. We herein developed a wearable antifouling electrochemical sensor based on a novel multifunctional hydrogel for the detection of targets in sweat. The integration of polyethylene glycol (PEG) into the sulfobetaine methacrylate (SBMA) hydrogel results in a robust network structure characterized by abundant hydrophilic groups on its surface, significantly enhancing the PEG-SBMA hydrogel's antifouling and mechanical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!