Angiogenesis promotes neurological recovery after acute ischemic stroke (AIS), and microRNAs play crucial roles in cerebral angiogenesis. This study found that Homo sapiens-microRNA-1303(miR-1303) was reduced in blood specimens of AIS patients and human umbilical vein endothelial cells after suffering from oxygen-glucose deprivation/reperfusion. The experiment detected the effect of miR-1303 on angiogenesis by wound healing assay, tube formation assay, and transwell assay. Down-regulation of miRNA-1303 promotes angiogenesis in vitro experiments, while miR-1303 over-expression reverses this effect. Based on bioinformatics analyses and dual-luciferase reporter assay, the thrombospondin type 1 domain containing 7A (THSD7A) was investigated and further validated as the downstream gene of miR-1303. Furthermore, the knockdown of miR-1303 decreased the protein translation and mRNA transcript levels of THSD7A. Our results reveal a novel miR-1303/THSD7A pathway for angiogenesis and further imply that miR-1303 can be a promising biomarker and therapeutic target for AIS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12033-023-00906-9DOI Listing

Publication Analysis

Top Keywords

down-regulation mirna-1303
8
mirna-1303 promotes
8
promotes angiogenesis
8
angiogenesis
6
mir-1303
5
angiogenesis huvecs
4
huvecs targeting
4
targeting thsd7a
4
thsd7a angiogenesis
4
angiogenesis promotes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!