Understanding the dynamic structure of intrinsically disordered proteins (IDPs) is important to deciphering their biological functions. Here, we exploit precision entropic elasticity measurements to infer the conformational behavior of a model IDP construct formed from the disordered tail of the neurofilament low molecular weight protein. The IDP construct notably displays a low-force power-law elastic regime, consistent with the Pincus blob model, which allows direct extraction of the Flory exponent, [Formula: see text], from the force-extension relationship. We find [Formula: see text] increases with added denaturant, transitioning from a nearly ideal chain to a swollen chain in a manner quantitatively consistent with measurements of IDP dimensions from other experimental techniques. We suggest that measurements of entropic elasticity could be broadly useful in the study of IDP structure.

Download full-text PDF

Source
http://dx.doi.org/10.1140/epje/s10189-023-00360-0DOI Listing

Publication Analysis

Top Keywords

pincus blob
8
intrinsically disordered
8
entropic elasticity
8
idp construct
8
[formula text]
8
blob elasticity
4
elasticity intrinsically
4
disordered protein
4
protein understanding
4
understanding dynamic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!