A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Femtosecond-laser-patterned origami Janus membrane toward enhanced water fog harvesting. | LitMetric

Femtosecond-laser-patterned origami Janus membrane toward enhanced water fog harvesting.

Nanoscale

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.

Published: November 2023

Fog harvesting is an effective way to relieve water shortages in arid regions; thus, improving the efficiency of fog harvesting is urgently needed for both academic research and practical applications. Here, we report an origami patterned Janus (O-P-Janus) membrane using laser-ablated copper foams inspired by origami handcraft and traditional Chinese architecture. Compared to the planar fully ablated Janus membrane, our O-P-Janus membrane, with selectively ablated rectangular areas, exhibits an exceptional water collection rate (WCR) of approximately 267%. The underlying physical mechanism of WCR enhancement is revealed and attributed to the enhanced fog adsorbing capacity on the upper superhydrophobic origami structures and the accelerated removal of accumulated droplets beneath the lower superhydrophilic V-shaped tips. This O-P-Janus membrane with excellent fog collection performance should open up a new avenue for both device designs and potential applications toward structuring-enhanced fog collection and microfluidic control platforms.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr03829gDOI Listing

Publication Analysis

Top Keywords

fog harvesting
12
o-p-janus membrane
12
janus membrane
8
fog collection
8
fog
6
membrane
5
femtosecond-laser-patterned origami
4
origami janus
4
membrane enhanced
4
enhanced water
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!