Antibiotic resistance by bacterial pathogens against widely used β-lactam drugs is a major concern to public health worldwide, resulting in high healthcare cost. The present study aimed to extend previous research by investigating the potential activity of reported compounds against the β-lactamase protein. 74 compounds from computational screening reported in our previous study against β-lactamase CMY-10 were subjected to docking studies against blaCTX-M15. Site-Identification by Ligand Competitive Saturation (SILCS)-Monte Carlo (SILCS-MC) was applied to the top two ligands selected from molecular docking studies to predict and refine their conformations for binding conformations against blaCTX-M15. The SILCS-MC method predicted affinities of -8.6 and -10.7 kcal/mol for Top1 and Top2, respectively, indicating low micromolar binding to the blaCTX-M15 active site. MD simulations initiated from SILCS-MC docked orientations were carried out to better characterize the dynamics and stability of the complexes. Important interactions anchoring the ligand within the active site include pi-pi stacked, amide-pi, and pi-alkyl interactions. Simulations of the Top2-blaCTX-M15 complex exhibited stability associated with a wide range of hydrogen-bond and aromatic interactions between the protein and the ligand. Experimental β-lactamase (BL) activity assays showed that Top1 has 0.1 u/mg BL activity, and Top2 has a BL activity of 0.038 u/mg with a minimum inhibitory concentration of 1 mg/mL. The inhibitors proposed in this study are non-β-lactam-based β-lactamase inhibitors that exhibit the potential to be used in combination with β-lactam antibiotics against multidrug-resistant clinical isolates. Thus, Top1 and Top2 represent lead compounds that increase the efficacy of β-lactam antibiotics with a low dose concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698858 | PMC |
http://dx.doi.org/10.1021/acs.jcim.3c00780 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!