Enteroaggregative (EAEC) is an evolving etiological agent of acute and persistent diarrhoea worldwide. The previous study from our laboratory has reported the apoptosis-inducing activity of EAEC in human small intestinal and colonic epithelial cell lines. In the present investigation, we have explored the underlying mechanism of EAEC-induced apoptosis in human intestinal epithelial cell lines. INT-407 and HCT-15 cells were infected with EAEC-T8 and EAEC-pT8 (plasmid cured strain of EAEC-T8) separately. Cells cultured in the absence of bacteria served as a negative control in all the experiments. For the subsequent experiments, the molecular mechanism(s) of epithelial cell aposptosis was measured in EAEC infecting both the cell lines by flow cytometry, real-time PCR and Western blotting. EAEC was found to activate the intrinsic/mitochondrial apoptotic pathway in both the cell lines through upregulation of pro-apoptotic Bax and Bak, un-alteration/reduction in the level of anti-apoptotic Bcl-2 and Bcl-X, decrease in mitochondrial transmembrane potential, accumulation of cytosolic cytochrome leading to activation of procaspase-9 and procaspase-3, which ultimately resulted in DNA fragmentation and apoptosis. Further, an increased expression of Fas, activation of procaspase-8 and upregulation of pro-apoptotic Bid in the EAEC-infected cells indicated the involvement of extrinsic apoptotic pathway too in this process. Our finding has undoubtedly led to an increased understanding of EAEC pathogenesis, which may be helpful to develop an improved strategy to combat the infection.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.001760DOI Listing

Publication Analysis

Top Keywords

cell lines
16
epithelial cell
12
human intestinal
8
intestinal epithelial
8
apoptotic pathway
8
upregulation pro-apoptotic
8
eaec
5
cell
5
molecular mechanism
4
mechanism induced
4

Similar Publications

Discovery of noncovalent diaminopyrimidine-based Inhibitors for glioblastoma via a dual FAK/DNA targeting strategy.

Eur J Med Chem

January 2025

School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:

Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.

View Article and Find Full Text PDF

Ginseng and its processed products are valued as health foods for their nutritional benefits. The traditional forms of processed ginseng include white ginseng, dali ginseng (DLG), red ginseng (RG), and black ginseng (BG). However, the impact of processing on the chemical composition and anti-tumor efficacy of these products is not well understood.

View Article and Find Full Text PDF

Many lines of evidence suggest that circular RNAs (circRNAs) are closely associated with the occurrence and progression of colon cancer. The objective of this study was to investigate the regulatory effects and mechanisms of circ_0075829 on ferroptosis and immune escape in colon cancer. We utilized colon cancer cell lines and a xenograft mouse model to analyze the function of circ_0075829 in vitro and in vivo.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) has high mortality. The role and regulatory mechanism of hsa_circ_0021727 (circ_0021727) in ESCC remain largely unknown. This study focused on the undiscovered impact of circ_0021727 on cell cycle progression, apoptosis, and angiogenesis of ESCC.

View Article and Find Full Text PDF

MTHFD2 promotes breast cancer cell proliferation through IFRD1 RNA m6A methylation-mediated HDAC3/p53/mTOR pathway.

Neoplasma

December 2024

Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.

MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!