Background & Aims: Vaccination with tumor-associated antigen-pulsed dendritic cells leads to specific T-cell response against hepatocellular carcinoma. However, clinical response has been shown to be limited. High regulatory T-cell count is associated with poor prognosis and seems to mediate immune tolerance in hepatocellular carcinoma. Forkhead box P3-peptide inhibitor P60 has been shown to specifically inhibit regulatory T-cell function in murine models. Aim of this study was to investigate whether P60 can improve the immune response induced by vaccination with adenovirus-transduced dendritic cells expressing alpha-fetoprotein in subcutaneous and orthotopic murine models for hepatocellular carcinoma.
Methods: Mice developing subcutaneous or orthotopic HCC received daily treatment with P60 starting at different tumor stages. Additionally, mice were vaccinated twice with dendritic cells expressing alpha-fetoprotein.
Results: In a preventive setting prior to tumor engraftment, vaccination with alpha-fetoprotein-expressing dendritic cells significantly decreased tumor growth in a subcutaneous model ( = .0256), but no further effects were achieved by addition of P60. However, P60 enhanced the antitumoral effect of a vaccination with alpha-fetoprotein-expressing dendritic cells in established subcutaneous and orthotopic hepatocellular carcinoma characterized by high Treg levels ( = .011).
Conclusion: In this study, we showed that vaccination with alpha-fetoprotein-expressing dendritic cells in combination with a specific inhibition of regulatory T-cells by using P60 leads to synergistic tumor inhibition and prolonged survival. This emphasizes the importance of regulatory T-cells inhibition for obtaining an effective antitumoral immune response in hepatocellular carcinoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08820139.2023.2261980 | DOI Listing |
Background: Alzheimer's disease (AD) is a devastating form of dementia, and its prevalence is rising as human lifespan increases. Our lab created the AD-BXD mouse model, which expresses AD mutations across a genetically diverse reference panel (BXD), to identify factors that confer resilience to cognitive decline in AD. This model mimics key characteristics of human AD including variation in age of onset and severity of cognitive decline.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Columbia University Irving Medical Center, New York, NY, USA.
Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Afe Babalola University, Ado-Ekiti (ABUAD), Ado-Ekiti, Ekiti state, Nigeria.
Background: The impact of probiotics as gut and immunological modulator in restoring gut microbial balance and immune cells expression have generated much attention in the health sector. Its inhibitory effect on bacterial translocation and associated neural inflammatory processes has been reported. However, there is scarcity of data on its neuroprotective impact against neuroinflammation-associated neurodegeneration and memory impairment.
View Article and Find Full Text PDFBackground: Understanding the fundamental differences between the human and pre-human brain is a prerequisite for designing meaningful models and therapies for AD. Expressed CHRFAM7A, a human restricted gene with carrier frequency of 75% in the human population predicts profound translational significance.
Method: The physiological role of CHRFAM7A in human brain is explored using multiomics approach on 600 post mortem human brain tissue samples (ROSMAP).
Background: A 73-year-old female with a 3 year history of Alzheimer's disease was treated within the protocol of The Alzheimer's Autism and Cognitive Impairment Stem Cell Treatment Study (ACIST), an IRB approved clinical study registered with clinicaltrials.gov NCT03724136.
Method: The procedure consists of bone marrow aspiration, cell separation using an FDA cleared class 2 device, and intravenous and intranasal administration of the stem cell fraction.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!