The proportion of lung cancer in never smokers is rising, especially among Asian women, but there is no effective early detection tool. Here, we developed a polygenic risk score (PRS), which may help to identify the population with higher risk of lung cancer in never-smoking women. We first performed a large GWAS meta-analysis (8595 cases and 8275 controls) to systematically identify the susceptibility loci for lung cancer in never-smoking Asian women and then generated a PRS using GWAS datasets. Furthermore, we evaluated the utility and effectiveness of PRS in an independent Chinese prospective cohort comprising 55 266 individuals. The GWAS meta-analysis identified eight known loci and a novel locus (5q11.2) at the genome-wide statistical significance level of P < 5 × 10 . Based on the summary statistics of GWAS, we derived a polygenic risk score including 21 variants (PRS-21) for lung cancer in never-smoking women. Furthermore, PRS-21 had a hazard ratio (HR) per SD of 1.29 (95% CI = 1.18-1.41) in the prospective cohort. Compared with participants who had a low genetic risk, those with an intermediate (HR = 1.32, 95% CI: 1.00-1.72) and high (HR = 2.09, 95% CI: 1.56-2.80) genetic risk had a significantly higher risk of incident lung cancer. The addition of PRS-21 to the conventional risk model yielded a modest significant improvement in AUC (0.697 to 0.711) and net reclassification improvement (24.2%). The GWAS-derived PRS-21 significantly improves the risk stratification and prediction accuracy for incident lung cancer in never-smoking Asian women, demonstrating the potential for identification of high-risk individuals and early screening.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.34765DOI Listing

Publication Analysis

Top Keywords

lung cancer
16
cancer never-smoking
12
polygenic risk
8
risk score
8
never-smoking women
8
asian women
8
gwas meta-analysis
8
development evaluation
4
evaluation polygenic
4
lung
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!