Background: Cardiac hypertrophy and subsequent heart failure impose a considerable burden on public health worldwide. Impaired protein degradation, especially endo-lysosome-mediated degradation of membrane proteins, is associated with cardiac hypertrophy progression. CHMP4C (charged multivesicular body protein 4C), a critical constituent of multivesicular bodies, is involved in cellular trafficking and signaling. However, the specific role of CHMP4C in the progression of cardiac hypertrophy remains largely unknown.
Methods: Mouse models with CHMP4C knockout or cardiadc-specific overexpression were subjected to transverse aortic constriction surgery for 4 weeks. Cardiac morphology and function were assessed through histological staining and echocardiography. Confocal imaging and coimmunoprecipitation assays were performed to identify the direct target of CHMP4C. An EGFR (epidermal growth factor receptor) inhibitor was administrated to determine whether effects of CHMP4C on cardiac hypertrophy were EGFR dependent.
Results: CHMP4C was significantly upregulated in both pressure-overloaded mice and spontaneously hypertensive rats. Compared with wild-type mice, CHMP4C deficiency exacerbated transverse aortic constriction-induced cardiac hypertrophy, whereas CHMP4C overexpression in cardiomyocytes attenuated cardiac dysfunction. Mechanistically, the effect of CHMP4C on cardiac hypertrophy relied on the EGFR signaling pathway. Fluorescent staining and coimmunoprecipitation assays confirmed that CHMP4C interacts directly with EGFR and promotes lysosome-mediated degradation of activated EGFR, thus attenuating cardiac hypertrophy. Notably, an EGFR inhibitor canertinib counteracted the exacerbation of cardiac hypertrophy induced by CHMP4C knockdown in vitro and in vivo.
Conclusions: CHMP4C represses cardiac hypertrophy by modulating lysosomal degradation of EGFR and is a potential therapeutic candidate for cardiac hypertrophy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/HYPERTENSIONAHA.123.21427 | DOI Listing |
Am J Physiol Regul Integr Comp Physiol
December 2024
Curtin University, Curtin Medical Research Institute (Bentley, WA, AUSTRALIA).
Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.
View Article and Find Full Text PDFJ Hypertens
December 2024
Division of Internal Medicine, Candiolo Cancer Institutute FPO - IRCCS, Candiolo.
Background: Heart failure with preserved ejection fraction (HFpEF) is a high prevalence condition, with high rates of hospitalization and mortality. Arterial hypertension is the main risk factor for HFpEF. Among hypertensive patients, alterations in cardiac and vascular morphology identify hypertension-mediated organ damage (HMOD).
View Article and Find Full Text PDFJ Am Heart Assoc
January 2025
Division of Cardiovascular Science, Faculty of Biology, Medicine and Health The University of Manchester Manchester UK.
Background: Heart failure with preserved ejection fraction (HFpEF) is linked to prolonged endoplasmic reticulum (ER) stress. P21-activated kinase 2 (Pak2) facilitates a protective ER stress response. This study explores the mechanism and role of Pak2 in HFpEF pathology.
View Article and Find Full Text PDFCureus
December 2024
Pharmacy, Punjab University College of Pharmacy, Lahore, PAK.
Berardinelli-Seip congenital lipodystrophy (BSCL), also known as congenital generalized lipodystrophy (CGL), is an exceptionally rare autosomal recessive disorder marked by a significant deficiency of adipose tissue throughout the body. This lack of adipose tissue, normally found beneath the skin and between internal organs, leads to impaired adipocyte formation and fat storage, causing lipids to accumulate in atypical tissues such as muscles and the liver. The extent of adipose tissue loss directly influences the severity of symptoms, which can include a muscular appearance, increased appetite, bone cysts, marrow fat depletion, acromegalic features, severe insulin resistance, skeletal muscle hypertrophy, hypertrophic cardiomyopathy, hepatic steatosis, hepatomegaly, cirrhosis, and intellectual disability.
View Article and Find Full Text PDFAnn Thorac Surg Short Rep
December 2024
Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, Houston, Texas.
This report describes a patient with a thoracic aortic aneurysm who presented with chest pain and dyspnea. Preoperative studies revealed a massive cardiomediastinal silhouette. Within hours after the operation, a profound reduction in cardiomegaly was observed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!