Purpose: To observe the expression differences and potential effects of autophagy-related Beclin1 (mammalian Atg6) and Uncoordinated-51 like kinase 1 (ULK1) in the oxygen-induced retinopathy (OIR) model.
Materials And Methods: Thirty-three C57BL/6 mice in OIR model group were exposed to 75 ± 0.5% oxygen from postnatal day-of-life 7 (P7) to P12, and were then brought into normal room environment (relative hypoxia stage) and raised to P17. Thirty-three control mice were kept in a normal room environment. The expression of autophagy in the retina tissue was assessed by Western blot analysis. The thickness and ultrastructural of retina were observed by light microscopy and transmission electron microscope (TEM) on P17.
Results: In the hyperoxia stage (P8-P11), the expression of Beclin1, ULK1 and Autophagy 5 (Atg5) in retina showed no significant difference between the OIR model group and the control group. In the relatively hypoxia stage (P14 to P17), however, the protein level of Beclin1, ULK1, and Bcl-2-associated X protein (Bax) were upregulated in the retina of the OIR model group, whereas B-cell lymphoma 2 (Bcl-2) was downregulated. The autophagosomes in the photoreceptors of retina in the OIR mice were observed. The inner-segment/out-segment (IS/OS) layer in OIR model group was thinner than that the control group on P17.
Conclusions: The expression of Beclin-1 and ULK1 in retina has changed in the OIR model, and the change of Beclin-1 and ULK1 expression is related to the change of oxygen concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577824 | PMC |
http://dx.doi.org/10.1016/j.aopr.2022.100065 | DOI Listing |
Retinopathy of prematurity (ROP) and diabetic retinopathy (DR) are ocular disorders in which a loss of retinal vasculature leads to ischemia followed by a compensatory neovascularization response. In mice, this is modeled using oxygen-induced retinopathy (OIR), whereby neonatal animals are transiently housed under hyperoxic conditions that result in central retina vessel regression and subsequent neovascularization. Using endothelial cell (EC)-specific gene deletion, we found that loss of two ETS-family transcription factors, ERG and FLI1, led to regression of OIR-induced neovascular vessels but failed to improve visual function, suggesting that relevant retinal damage occurs prior to and independently of neovascularization.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Cytokine
January 2025
Department of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China. Electronic address:
Aims: Angiogenesis is tightly controlled by growth factors and cytokines in pathophysiological settings. Despite the importance of Interleukin 29 (IL-29), a newly identified cytokine of type III interferon family, its role in angiogenesis remains unknown. We aimed to elucidate IL-29's impact on angiogenesis under both and physiological and pathological conditions.
View Article and Find Full Text PDFBiomed Phys Eng Express
December 2024
Department of Radiation Oncology, Stanford University, 875 Blake Wilbur Dr, Stanford, California, 94305-6104, UNITED STATES.
Single-isocenter multitarget (SIMT) stereotactic-radiosurgery (SRS) has recently emerged as a powerful treatment regimen for intracranial tumors. With high specificity, SIMT SRS allows for rapid, high-dose delivery while maintaining integrity of adjacent healthy tissues and minimizing neurocognitive damage to patients. Highly robust and accurate quality assurance (QA) tests are critical to minimize off-targets and damage to surrounding healthy tissues.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Ophthalmology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Osaka, Japan.
Retinopathy of prematurity (ROP) is primarily caused by the exposure of preterm infants with underdeveloped blood vessels to high oxygen concentrations. This damages the astrocytes that promote normal vascular development, leading to avascularity, pathological neovascularization, and retinal detachment, and even blindness as the disease progresses. In this study, the aim was to investigate the differences in the characteristics of astrocytes and blood vessels between wild-type (WT) and genetically modified mice overexpressing platelet-derived growth factor subunit A (PDGF-A) in the retina immediately after high oxygen exposure, a protocol in the oxygen-induced retinopathy (OIR) model of ROP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!