A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Applying a Gene Reversal Rate Computational Methodology to Identify Drugs for a Rare Cancer: Inflammatory Breast Cancer. | LitMetric

Applying a Gene Reversal Rate Computational Methodology to Identify Drugs for a Rare Cancer: Inflammatory Breast Cancer.

Cancer Inform

BRITE Institute and Department of Pharmaceutical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC, USA.

Published: October 2023

The aim of this study was to utilize a computational methodology based on Gene Reversal Rate (GRR) scoring to repurpose existing drugs for a rare and understudied cancer: inflammatory breast cancer (IBC). This method uses IBC-related gene expression signatures (GES) and drug-induced gene expression profiles from the LINCS database to calculate a GRR score for each candidate drug, and is based on the idea that a compound that can counteract gene expression changes of a disease may have potential therapeutic applications for that disease. Genes related to IBC with associated differential expression data (265 up-regulated and 122 down-regulated) were collated from PubMed-indexed publications. Drug-induced gene expression profiles were downloaded from the LINCS database and candidate drugs to treat IBC were predicted using their GRR scores. Thirty-two (32) drug perturbations that could potentially reverse the pre-compiled list of 297 IBC genes were obtained using the LINCS Canvas Browser (LCB) analysis. Binary combinations of the 32 perturbations were assessed computationally to identify combined perturbations with the highest GRR scores, and resulted in 131 combinations with GRR greater than 80%, that reverse up to 264 of the 297 genes in the IBC-GES. The top 35 combinations involve 20 unique individual drug perturbations, and 19 potential drug candidates. A comprehensive literature search confirmed 17 of the 19 known drugs as having either anti-cancer or anti-inflammatory activities. AZD-7545, BMS-754807, and nimesulide target known IBC relevant genes: PDK, Met, and COX, respectively. AG-14361, butalbital, and clobenpropit are known to be functionally relevant in DNA damage, cell cycle, and apoptosis, respectively. These findings support the use of the GRR approach to identify drug candidates and potential combination therapies that could be used to treat rare diseases such as IBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576937PMC
http://dx.doi.org/10.1177/11769351231202588DOI Listing

Publication Analysis

Top Keywords

gene expression
16
gene reversal
8
reversal rate
8
computational methodology
8
drugs rare
8
cancer inflammatory
8
inflammatory breast
8
breast cancer
8
drug-induced gene
8
expression profiles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!