Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The infection of bovine mammary glands by pathogenic microorganisms not only causes animal distress but also greatly limits the development of the dairy industry and animal husbandry. A deeper understanding of the host's initial response to infection may increase the accuracy of selecting drug-resistant animals or facilitate the development of new preventive or therapeutic intervention strategies. In addition to their functions of milk synthesis and secretion, bovine mammary epithelial cells (BMECs) play an irreplaceable role in the innate immune response. To better understand this process, the current study identified differentially expressed long noncoding lncRNAs (DE lncRNAs) and mRNAs (DE mRNAs) in BMECs exposed to Escherichia coli lipopolysaccharide (LPS) and further explored the functions and interactions of these lncRNAs and mRNAs.
Results: In this study, transcriptome analysis was performed by RNA sequencing (RNA-seq), and the functions of the DE mRNAs and DE lncRNAs were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Next, we constructed a modulation network to gain a deeper understanding of the interactions and roles of these lncRNAs and mRNAs in the context of LPS-induced inflammation. A total of 231 DE lncRNAs and 892 DE mRNAs were identified. Functional enrichment analysis revealed that pathways related to inflammation and the immune response were markedly enriched in the DE genes. In addition, research results have shown that cell death mechanisms, such as necroptosis and pyroptosis, may play key roles in LPS-induced inflammation.
Conclusions: In summary, the current study identified DE lncRNAs and mRNAs and predicted the signaling pathways and biological processes involved in the inflammatory response of BMECs that might become candidate therapeutic and prognostic targets for mastitis. This study also revealed several possible pathogenic mechanisms of mastitis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580555 | PMC |
http://dx.doi.org/10.1186/s12917-023-03780-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!