This article focuses on the development of algorithms for a smart neurorehabilitation system, whose core is made up of artificial neural networks. The authors of the article have proposed a completely unique transfer of ACE-R results to the CHC model. This unique approach allows for the saturation of the CHC model domains according to modified ACE-R factor analysis. The outputs of the proposed algorithm thus enable the automatic creation of a personalized and optimized neurorehabilitation plan for individual patients to train their cognitive functions. A set of tasks in 6 levels of difficulty (level 1 to level 6) was designed for each of the nine CHC model domains. For each patient, the results of the ACE-R screening helped deter-mine the specific CHC domains to be rehabilitated, as well as the initial gaming level for rehabilitation in each domain. The proposed artificial neural network algorithm was adapted to real data from 703 patients. Experimental outputs were compared to the outputs of the initially designed fuzzy expert system, which was trained on the same real data, and all outputs from both systems were statistically evaluated against expert conclusions that were available. It is evident from the conducted experimental study that the smart neurorehabilitation system using artificial neural networks achieved significantly better results than the neurorehabilitation system whose core is a fuzzy expert system. Both algorithms are implemented into a comprehensive neurorehabilitation portal (Eddie), which was supported by a research project from the Technology Agency of the Czech Republic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580608 | PMC |
http://dx.doi.org/10.1186/s12911-023-02321-1 | DOI Listing |
Sci Rep
January 2025
Institute of Mechanical Science, Vilnius Gediminas Technical University, Vilnius, 10105, Lithuania.
Digital transformation (DT) has become vital for companies trying to remain competitive in the recent ever-changing technological environment. DT is the integration of digital technologies into all disciplines of business from regular activities to strategic decision making. Risk management planning requires projects to assess possible risks that may negatively or positively affect a DT project.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Centre for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Łukasiewicza 5 St., 50-370 Wroclaw, Poland.
In the era of Industry 4.0, additive manufacturing (AM) technology plays a crucial role in optimizing production processes, especially for small- and medium-sized enterprises (SMEs) striving to enhance competitiveness. Selecting the appropriate material for AM is a complex process that requires considering numerous technical, economic, and environmental criteria.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Institute of Learning Sciences and Technologies, National Tsing Hua University, Hsinchu, Taiwan.
Background: Health misinformation undermines responses to health crises, with social media amplifying the issue. Although organizations work to correct misinformation, challenges persist due to reasons such as the difficulty of effectively sharing corrections and information being overwhelming. At the same time, social media offers valuable interactive data, enabling researchers to analyze user engagement with health misinformation corrections and refine content design strategies.
View Article and Find Full Text PDFJ Environ Manage
February 2025
School of Humanities and Social Science, Yancheng Institute of Technology, Yancheng, Jiangsu, 224007, China. Electronic address:
The tourism industry plays a pivotal role in both economic growth and environmental stewardship, making it essential to adopt practices that ensure long-term sustainability. This research aims at relating to the global concern of sustainable management in the tourism industry which is significant in eradicating the effects of environmental degradation as well as promoting economic development. The research problem focuses on exploring sustainable solutions for encouraging green tourism and implementing circular economy concepts.
View Article and Find Full Text PDFSci Rep
January 2025
Business School, Sichuan University, 610059, Chengdu, China.
The comprehensive benefit evaluation of LID based on multi-criteria decision-making methods faces technical issues such as the uncertainties and vagueness in hybrid information sources, which can affect the overall evaluation results and ranking of alternatives. This study introduces a multi-indicator fuzzy comprehensive benefit evaluation approach for the selection of LID measures, aiming to provide a robust and holistic framework for evaluating their benefits at the community level. The proposed methodology integrates quantitative environmental and economic indicators with qualitative social benefit indicators, combining the use of the Storm Water Management Model (SWMM) and ArcGIS for scenario-based analysis, and the use of hesitant fuzzy language sets and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) for decision-making.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!