Elucidating the polycyclic aromatic hydrocarbons involved in soot inception.

Commun Chem

King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center, Thuwal, 23955-6900, Saudi Arabia.

Published: October 2023

Polycyclic aromatic hydrocarbons are the main precursors to soot particles in combustion systems. A lack of direct experimental evidence has led to controversial theoretical explanations for the transition from gas-phase species to organic soot clusters. This work focuses on sampling infant soot particles from well-defined flames followed by analysis using state-of-the-art mass spectrometry. We found that PAH molecules present in soot particles are all stabilomers. Kinetic Monte Carlo simulations and thermodynamic stability calculations further identify the detected PAHs as peri-condensed and without aliphatic chains. Van der Waals forces can easily link PAHs of such size and shape to form PAH dimers and larger clusters under the specified flame conditions. Our results provide direct experimental evidence that soot inception is initiated by a physical process under typical flame conditions. This work improves our understanding of aerosol particulates, which has implications for their environmental and climate change impacts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579345PMC
http://dx.doi.org/10.1038/s42004-023-01017-xDOI Listing

Publication Analysis

Top Keywords

soot particles
12
polycyclic aromatic
8
aromatic hydrocarbons
8
soot inception
8
direct experimental
8
experimental evidence
8
flame conditions
8
soot
6
elucidating polycyclic
4
hydrocarbons involved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!