Rational designs of solid polymer electrolytes with high ion conduction are critical in enabling the creation of advanced lithium batteries. However, known polymer electrolytes have much lower ionic conductivity than liquid/ceramics at room temperature, which limits their practical use in batteries. Here we show that precise positioning of designed repeating units in alternating polymer sequences lays the foundation for homogenized Li distribution, non-aggregated Li-anion solvation and sequence-assisted site-to-site ion migration, facilitating the tuning of Li conductivity by up to three orders of magnitude. The assembled all-solid-state batteries facilitate reversible and dendrite-mitigated cycling against Li metal from ambient to elevated temperatures. This work demonstrates a powerful molecular engineering means to access highly ion-conductive solid-state materials for next-generation energy devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41563-023-01693-z | DOI Listing |
Chem Commun (Camb)
January 2025
Design of 3D-Printable Polymers Based on Regional Resources, Just Transition Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany.
Lithium batteries, essential for consumer electronics, transportation and the energy sector, still require further improvement in performance, safety, and sustainability. Traditonal organic solvent-based electrolytes, widely used in current systems, pose significant safety risks and restrict the development of next generation devices. Vitrimers are materials with unique physical and chemical properties, which offer a promising alternative to overcome these limitations, finally reaching processability and recyclability of solid electrolytes.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Engineering, Mathematics and Science Education, Mid Sweden University, SE-851 70 Sundsvall, Sweden.
A recyclability perspective is essential in the sustainable development of energy storage devices, such as lithium-ion batteries (LIBs), but the development of LIBs prioritizes battery capacity and energy density over recyclability, and hence, the recycling methods are complex and the recycling rate is low compared to other technologies. To improve this situation, the underlying battery design must be changed and the material choices need to be made with a sustainable mindset. A suitable and effective approach is to utilize bio-materials, such as paper and electrode composites made from graphite and cellulose, and adopt already existing recycling methods connected to the paper industry.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
Aqueous halogen batteries are gaining recognition for large-scale energy storage due to their high energy density, safety, environmental sustainability, and cost-effectiveness. However, the limited electrochemical stability window of aqueous electrolytes and the absence of desirable carbonaceous hosts that facilitate halogen redox reactions have hindered the advancement of halogen batteries. Here, a low-cost, high-concentration 26 m Li-B-C-O aqueous solution incorporating lithium bromide (LiBr), lithium chloride (LiCl), and lithium acetate (LiOAc) was developed for aqueous batteries, which demonstrated an expanded electrochemical stability window of .
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Lithium dendrites are widely acknowledged as the main culprit of the degradation of performance in various Li-based batteries. Studying the mechanism of lithium dendrite formation is challenging because of the high reactivity of lithium metal. In this work, a phase field model and in situ observation experiments were used to study the growth kinetics and morphologies of lithium dendrites in terms of anisotropy, temperature, and potential difference.
View Article and Find Full Text PDFISA Trans
December 2024
GEELY Automobile Research Institute Co. Ltd, Ningbo, Zhejiang 315699, China. Electronic address:
The voltage is one of limited reliable information for battery management system, and the faults of voltage sampling will result in adverse effects and lead to potential risks for operation, which emphasize the importance for investigating the failure modes of voltage sampling and diagnosis algorithm. In this article, a knowledge-data driven sampling diagnosis algorithm is established and an online intelligent diagnosis algorithm is proposed accordingly based on outlier detection with fuzzy entropy. The fault diagnosis algorithm is established and evaluated under positive exploitation, where the knowledge-base of failure mode based on equivalent simulating models is firstly constructed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!