Descending GABAergic pathway links brain sugar-sensing to peripheral nociceptive gating in Drosophila.

Nat Commun

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

Published: October 2023

Although painful stimuli elicit defensive responses including escape behavior for survival, starved animals often prioritize feeding over escape even in a noxious environment. This behavioral priority is typically mediated by suppression of noxious inputs through descending control in the brain, yet underlying molecular and cellular mechanisms are incompletely understood. Here we identify a cluster of GABAergic neurons in Drosophila larval brain, designated as SEZ-localized Descending GABAergic neurons (SDGs), that project descending axons onto the axon terminals of the peripheral nociceptive neurons and prevent presynaptic activity through GABA receptors. Remarkably, glucose feeding to starved larvae causes sustained activation of SDGs through glucose-sensing neurons and subsequent insulin signaling in SDGs, which attenuates nociception and thereby suppresses escape behavior in response to multiple noxious stimuli. These findings illustrate a neural mechanism by which sugar sensing neurons in the brain engages descending GABAergic neurons in nociceptive gating to achieve hierarchical interaction between feeding and escape behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579361PMC
http://dx.doi.org/10.1038/s41467-023-42202-9DOI Listing

Publication Analysis

Top Keywords

descending gabaergic
12
escape behavior
12
gabaergic neurons
12
peripheral nociceptive
8
nociceptive gating
8
feeding escape
8
neurons
6
descending
5
gabaergic pathway
4
pathway links
4

Similar Publications

Role of the Dorsal Cortex of the Inferior Colliculus in the Precedence Effect.

Med Sci Monit

January 2025

Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.

BACKGROUND The precedence effect (PE) is a physiological phenomenon for accurate sound localization in a reverberant environment. Physiological studies of PE have mostly focused on the central nucleus of the inferior colliculus (CNIC), which receives ascending and descending projections, as well as projections from the shell of the inferior colliculus (IC) and contralateral IC. However, the role of the dorsal cortex of the IC (DCIC), which receives ascending and descending projections to ensure sound information processing and conduction on PE formation, remains unclear.

View Article and Find Full Text PDF

An excitatory neural circuit for descending inhibition of itch processing.

Cell Rep

December 2024

Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China. Electronic address:

Itch serves as a self-protection mechanism against harmful external agents, whereas uncontrolled and persistent itch severely influences the quality of life of patients and aggravates their diseases. Unfortunately, the existing treatments are largely ineffective. The current difficulty in treatment may be closely related to the fact that the central neural mechanisms underlying itch processing, especially descending inhibition of itch, are poorly understood.

View Article and Find Full Text PDF

The neocortex controls its own sensory input in part through top-down inhibitory mechanisms. Descending corticothalamic projections drive GABAergic neurons of the thalamic reticular nucleus (TRN), which govern thalamocortical cell activity via inhibition. Neurons in sensory TRN are organized into primary and higher order (HO) subpopulations, with separate intrathalamic connections and distinct genetic and functional properties.

View Article and Find Full Text PDF

Walking is a complex motor programme involving coordinated and distributed activity across the brain and the spinal cord. Halting appropriately at the correct time is a critical component of walking control. Despite progress in identifying neurons driving halting, the underlying neural circuit mechanisms responsible for overruling the competing walking state remain unclear.

View Article and Find Full Text PDF

Mu opioid receptors (MORs) represent a vital mechanism related to the modulation of stress-induced analgesia (SIA). Previous studies have reported on the gamma-aminobutyric acid (GABA)ergic "disinhibition" mechanisms of MORs on the descending pain modulatory pathway of SIA induced in the midbrain. However, the role of the MORs expressed in the medial prefrontal cortex (mPFC), one of the main cortical areas participating in pain modulation, in SIA remains completely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!