PARP1/2 inhibitors (PARPi) are effective clinically used drugs for the treatment of cancers with BRCA deficiencies. PARPi have had limited success and applicability beyond BRCA deficient cancers, and their effect is diminished by resistance mechanisms. The recent discovery of Histone PARylation Factor (HPF1) and the role it plays in the PARylation reaction by forming a shared active site with PARP1 raises the possibility that novel inhibitors that target the PARP1-HPF1 complex can be identified. Herein we describe a simple and cost-effective high-throughput screening (HTS) method aimed at discovering inhibitors of the PARP1-HPF1 complex. Upon HTS validation, we first applied this method to screen a small PARP-focused library of compounds and then scale up our approach using robotic automation to conduct a pilot screen of 10,000 compounds and validating >100 hits. This work demonstrates for the first time the capacity to discover potent inhibitors of the PARP1-HPF1 complex, which may have utility as probes to better understand the DNA damage response and as therapeutics for cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10872402 | PMC |
http://dx.doi.org/10.1016/j.slasd.2023.10.003 | DOI Listing |
SLAS Discov
December 2023
Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus (CU AMC), Aurora, CO, USA; The CU AMC Center for Drug Discovery, Aurora, CO, USA; The University of Colorado Cancer Center, Aurora, CO, USA. Electronic address:
PARP1/2 inhibitors (PARPi) are effective clinically used drugs for the treatment of cancers with BRCA deficiencies. PARPi have had limited success and applicability beyond BRCA deficient cancers, and their effect is diminished by resistance mechanisms. The recent discovery of Histone PARylation Factor (HPF1) and the role it plays in the PARylation reaction by forming a shared active site with PARP1 raises the possibility that novel inhibitors that target the PARP1-HPF1 complex can be identified.
View Article and Find Full Text PDFBiochemistry
August 2023
Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.
PARP1, upon binding to damaged DNA, is activated to perform poly ADP-ribosylation (PARylation) on itself and other proteins, which leads to relaxation of chromatin and recruitment of DNA repair factors. HPF1 was recently discovered as a protein cofactor of PARP1 that directs preferential PARylation of histones over other targets by contributing to and altering the PARP1 active site. Inhibitors of PARP1 (PARPi) are used in the treatment of BRCA-/- cancers, but the basis for their potency in cells, especially in the context of HPF1, is not fully understood.
View Article and Find Full Text PDFNat Commun
June 2023
Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
In the mammalian DNA damage response, ADP-ribosylation signalling is of crucial importance to mark sites of DNA damage as well as recruit and regulate repairs factors. Specifically, the PARP1:HPF1 complex recognises damaged DNA and catalyses the formation of serine-linked ADP-ribosylation marks (mono-Ser-ADPr), which are extended into ADP-ribose polymers (poly-Ser-ADPr) by PARP1 alone. Poly-Ser-ADPr is reversed by PARG, while the terminal mono-Ser-ADPr is removed by ARH3.
View Article and Find Full Text PDFNat Struct Mol Biol
May 2023
University of Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, Rennes, France.
Poly(ADP-ribose) polymerase 1 (PARP1) activity is regulated by its co-factor histone poly(ADP-ribosylation) factor 1 (HPF1). The complex formed by HPF1 and PARP1 catalyzes ADP-ribosylation of serine residues of proteins near DNA breaks, mainly PARP1 and histones. However, the effect of HPF1 on DNA repair regulated by PARP1 remains unclear.
View Article and Find Full Text PDFNucleic Acids Res
May 2021
Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
DNA ligase 1 (LIG1) is known as the major DNA ligase responsible for Okazaki fragment joining. Recent studies have implicated LIG3 complexed with XRCC1 as an alternative player in Okazaki fragment joining in cases where LIG1 is not functional, although the underlying mechanisms are largely unknown. Here, using a cell-free system derived from Xenopus egg extracts, we demonstrated the essential role of PARP1-HPF1 in LIG3-dependent Okazaki fragment joining.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!