Effects of phytohormone on Chlorella vulgaris grown in wastewater-flue gas: C/N/S fixation, wastewater treatment and metabolome analysis.

Chemosphere

Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, PR China. Electronic address:

Published: December 2023

Chlorella vulgaris (C. vulgaris) can provide the means to fix CO from complicated flue gas, treat wastewater and reach a sustainable production of petrochemical substitutes simultaneously. However, a prerequisite to achieving this goal is to promote C. vulgaris growth and improve the CO-to-fatty acids conversion efficiency under different conditions of flue gas and wastewater. Thus, the addition of indole-3-acetic acid (IAA) in C. vulgaris cultivation was proposed. Results showed that C. vulgaris were more easily inhibited by 100 ppm NO and 200 ppm SO under low nitrogen (N) condition. NO and SO decreased the carbon (C) fixation; but increased N and sulfur (S) fixation. IAA adjusted the content of superoxide dismutase (SOD) and malondialdehyde (MDA), improved the expression of psbA, rbcL, and accD, attenuated the toxicity of NO and SO on C. vulgaris, and ultimately improved cell growth (2014.64-2458.16 mg·L) and restored CO fixation rate (170.98-220.92 mg CO·L·d). Moreover, wastewater was found to have a high treatment efficiency because C. vulgaris grew well in all treatments, and the maximal removal rates of both N and phosphorus (P) reached 100%. Metabonomic analysis showed that IAA, "NO and SO" were involved in the down-regulated and up-regulated expression of multiple metabolites, such as fatty acids, amino acids, and carbohydrates. IAA was beneficial for improving lipid accumulation with 24584.21-27634.23 μg g, especially monounsaturated fatty acids (MUFAs) dominated by 16-18 C fatty acids, in C. vulgaris cells. It was concluded that IAA enhanced the CO fixation, fatty acids production of C. vulgaris and its nutrients removal rate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.140398DOI Listing

Publication Analysis

Top Keywords

fatty acids
16
vulgaris
10
chlorella vulgaris
8
flue gas
8
acids
6
fixation
5
iaa
5
effects phytohormone
4
phytohormone chlorella
4
vulgaris grown
4

Similar Publications

Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.

View Article and Find Full Text PDF

Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a systemic, chronic autoimmune disease. Many studies have shown that microorganisms may be an important pathological factor leading to the onset of RA. Some infectious or non-infectious pathogenic microorganisms and their metabolites may be the initiating factors of the early onset of RA.

View Article and Find Full Text PDF

Cannabidiol (CBD) and Δ-tetrahydrocannabinol (THC), the main components of Cannabis sativa plants, can interact with specific cell receptors known as cannabinoid receptors (CBs). The endogenous compounds anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are CB agonists, and, alongside enzymes, they constitute the endocannabinoid system (ECS) and take part in neuromodulation. Several LC-MS/MS methods have been developed to quantify these compounds in biological matrixes, but a fast and simple method that can determine these analytes in plasma samples simultaneously is not available.

View Article and Find Full Text PDF

Background: While there are numerous benefits to tea consumption, its long-term impact on patients with chronic kidney disease (CKD) remains unclear.

Method: Our analysis included 17,575 individuals with CKD from an initial 45,019 participants in the National Health and Nutrition Examination Survey (NHANES) (1999-2018). Individuals with extreme dietary habits, pregnancy, or non-CKD conditions were excluded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!