Modeling long-term transfers of radiocesium in farmland under different tillage and cover crop treatments.

Sci Total Environ

United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan; Center for International Field Agriculture Research & Education, Ibaraki University, 3-21-1, Ami, Inashiki, Ibaraki 300-0393, Japan. Electronic address:

Published: January 2024

The 2011 nuclear accident at Japan's Fukushima Daiichi Nuclear Power Plant (FDNPP) prompted inquiries about the long-term transfer of Cesium-137 (Cs) from soil to agricultural plants. In this context, numerical modeling is particularly useful for the long-term evaluation of the consequences of agroecosystem contamination. Agricultural practices, such as tillage and cover cropping, play key roles in Cs recycling in agroecosystems. In this study, we used 10-year monitoring data to develop a dynamic model to predict Cs redistribution (via uptake, litterfall, translocation, and percolation) under different tillage (no-tillage, NT; rotary cultivation, RC; moldboard plow, MP) and cover crop (rye; hairy vetch; fallow weed) treatments. The verification exercise and assessment results indicated the model's reliability, as the temporal dynamics of predicted values agreed with observed values. Tillage significantly influenced the Cs distribution in soil, thereby decreasing plant uptake of Cs, whereas cover crop exerted a minimal effect on Cs cycling. Furthermore, while the Cs concentrations in soybean grain under RC and NT treatments were comparable 62 years after the FDNPP accident, the concentration under MP treatment remained consistently the lowest. Despite natural decay being the main cause of the decreased global Cs level in the agroecosystem, with minimal losses from percolation to deeper soil layers and soybean harvesting, adopting an appropriate tillage practice was shown to promote a long-term reduction of Cs concentration in crops. Finally, to improve the model's accuracy, further research should consider incorporating the effects of soil properties and extreme weather events on Cs flow into the model, as these factors are essential for realizing improved agroecosystem predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167849DOI Listing

Publication Analysis

Top Keywords

cover crop
12
modeling long-term
8
tillage cover
8
tillage
5
long-term transfers
4
transfers radiocesium
4
radiocesium farmland
4
farmland tillage
4
cover
4
crop treatments
4

Similar Publications

Multi-environment field trials for wheat yield, stability and breeding progress in Germany.

Sci Data

January 2025

Section of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany.

Multi-environmental trials (MET) with temporal and spatial variance are crucial for understanding genotype-environment-management (GxExM) interactions in crops. Here, we present a MET dataset for winter wheat in Germany. The dataset encompasses MET spanning six years (2015-2020), six locations and nine crop management scenarios (consisting of combinations for three treatments, unbalanced in each location and year) comparing 228 cultivars released between 1963 and 2016, amounting to a total of 526,751 data points covering 24 traits.

View Article and Find Full Text PDF

How does forest fine root litter affect the agricultural soil NH and NO losses?

J Environ Manage

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:

In farmland shelterbelt systems, the decomposition and/or apoptosis of forest fine root litter could affect farmland soil properties at the tree-crop interface, particularly the soil nitrogen (N) cycling. However, how fine root litter affect the ammonia (NH) and nitrous oxide (NO) losses from farmland soil and the crop production is little known. A soil column experiment covering a whole rice season was conducted to evaluate the dynamics aforesaid in response to fine root litter of Populus (RP) and Metasequoia glyptostroboides (RM) with 0 and 240 kg ha N fertilizer input.

View Article and Find Full Text PDF

Characterization of Hazelnut Trees in Open Field Through High-Resolution UAV-Based Imagery and Vegetation Indices.

Sensors (Basel)

January 2025

Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.

The increasing demand for hazelnut kernels is favoring an upsurge in hazelnut cultivation worldwide, but ongoing climate change threatens this crop, affecting yield decreases and subject to uncontrolled pathogen and parasite attacks. Technical advances in precision agriculture are expected to support farmers to more efficiently control the physio-pathological status of crops. Here, we report a straightforward approach to monitoring hazelnut trees in an open field, using aerial multispectral pictures taken by drones.

View Article and Find Full Text PDF

Extracting fragmented cropland is essential for effective cropland management and sustainable agricultural development. However, extracting fragmented cropland presents significant challenges due to its irregular and blurred boundaries, as well as the diversity in crop types and distribution. Deep learning methods are widely used for land cover classification.

View Article and Find Full Text PDF

(L.) Skeels is a unique endemic species in Morocco, renowned for its ecological characteristics and socio-economic importance. In Morocco, recent years have seen an exacerbation of the harmful effects of climate change, leading to an alarming decline in the natural regeneration of this species in its original habitats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!