Reconstructing the relationship between microbial communities and past abrupt climate change is of great importance for understanding current biodiversity patterns and predicting changes under future climate scenarios. However, little is currently known about how microbial communities respond to changes in key environmental stages due to a lack of research in this area. Here, we examine the variability in the communities of bacteria, archaea, and fungi from sediments deposited offshore region of the Zambezi River between 21.7 and 9.6 thousand years ago (ka) (covering the last glacial maximum, or LGM, and the early Holocene) using DNA metabarcoding approach via high-throughput sequencing. The results showed that (1) microbial assemblages differed across three key time intervals, with the last deglaciation having the most homogeneous prokaryotic assemblages, while for fungal communities in the LGM, and the early Holocene and LGM differing the most; (2) the warm early Holocene showed the highest diversity, whereas the lowest diversity was found in the LGM; and (3) the selected indicator species better reflected the climatic characteristics of different environmental stages. These results highlight the power of ancient sedimentary DNA to refine our understanding of microbial dynamics in marine sedimentary systems near large rivers, thus providing a basis for better modeling ecological processes in further research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167787DOI Listing

Publication Analysis

Top Keywords

early holocene
12
sedimentary dna
8
offshore region
8
region zambezi
8
zambezi river
8
microbial communities
8
environmental stages
8
lgm early
8
microbial
5
dna reveals
4

Similar Publications

Spatiotemporal distribution of global peatland area during the Holocene.

Sci Data

January 2025

State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.

Peatlands are a key component of terrestrial ecosystems, and their development has an important impact on global carbon cycle and climate change. However, the long-term evolution of global peatlands remains uncertain, particularly their spatial distribution. We compiled 4700 basal peatland data during Holocene, and 669 pollen data of Sphagnum with basal and end ages, to allow a more robust reconstruction of the spatial distribution of peatlands.

View Article and Find Full Text PDF

The Altai mountains contain a number of cave and rockshelter sites that have given crucial information about human evolution in Asia. Most of these caves are located in the Gornyi Altai of Siberia, while the southern flank of the range remains much less known. Bukhtarma Cave was a karstic cave located near the former village of Peshchera, on the banks of the Bukhtarma River running through the foothills of the southern (Kazakh) Altai mountains.

View Article and Find Full Text PDF

During the transition from the Pleistocene to the Holocene and in the early Holocene period, hunter-gatherer communities across tropical South America deployed a range of technological strategies to adapt to diverse environmental conditions. This period witnessed a rich tapestry of technological practices, from enduring, widely disseminated tools to local and sporadically utilized technologies, shaping a multifaceted landscape of technological traditions. Lithic technology during this period was mainly marked by localized sourcing of raw materials, the use of multifunctional tools, a variety of projectile point designs, and the frequently utilization of unifacial shaping technology.

View Article and Find Full Text PDF

Global mean sea-level (GMSL) change can shed light on how the Earth system responds to warming. Glaciological evidence indicates that Earth's ice sheets retreated inland of early industrial (1850 CE) extents during the Holocene (11.7-0 ka), yet previous work suggests that Holocene GMSL never surpassed early industrial levels.

View Article and Find Full Text PDF

Ecology and Current Distribution of Three Habitat-Specialized Land Snail Species of the Genus (Gastropoda: Eupulmonata) in Europe.

Zool Stud

July 2024

Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia. E-mail: radovan. (Coufal) ; (Horsáková); (Peterka); (Horsák).

Our understanding of species distribution and ecology is critical to properly assess their conservation status. , , and have the centre of their current distribution in northern Europe, where their occurrence is relatively frequent. However, to the south their occurrence is fragmented and restricted to sites of late glacial/early Holocene origin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!