A reusable electrochemical glassy carbon electrode (GCE) platform based on the acid-responsive host-guest interaction between β-cyclodextrin (β-CD) and benzimidazole (BM) derivatives was developed. The β-CD can specifically recognize the BM derivative through the acid -responsive host-guest interaction. The electrode was first modified by eletrografting to immobilize a diamine linker (Boc-EDA), resulting in GCE in which one amine was used for covalent immobilization to the electrode and another Boc protected amine was used to solid-phase synthesis on following step-by-step modifications on the electrode. After deprotection of the Boc group on the GCE, carbonyldiimidazole (CDI)-activated β-CD was coupled with -NH on the electrode to result in GCE. Due to the nonspecific interaction, we further improved the GCE electrode by introducing immobilized poly(ethylene glycol) methyl ether (PEG-Me) to result in GCE, along with optimized procedures. CV, DPV, and EIS methods were applied for recording the electrochemistry signals. We utilized GCE to investigate the host-guest interaction and found the electrochemical signal exhibited dynamic behavior. The GCE was able to regenerate the β-CD surface more than 20 times after HCl acidic washes. We further investigated the interaction of carbendazim (CBZ), a commonly used fungicide in the agriculture and food industry, and observed a positive electrochemical response. The sensor design has potential applications in ensuring food safety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2023.108966 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.
Tumor metastasis is a difficult clinical problem to solve due to tumor heterogeneity and the emergence of antiapoptotic clones driven by tumor evolution. Clinical combination chemotherapy remains a standard treatment for solid metastasis tumors but with worse treatment efficiency. It is worth exploring a high-efficiency and low-side-effect therapeutic method to solve solid metastases.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
Host-guest binding plays a crucial role in the functionality of various systems, and its efficiency is often quantified using the binding free energy, which represents the free-energy difference between the bound and dissociated states. Here, we propose a methodology to compute the binding free energy based on the energy representation (ER) theory of solution, which enables us to evaluate the free-energy difference between the systems of interest with the molecular dynamics (MD) simulations. Unlike the other free-energy methods, such as the Bennett acceptance ratio (BAR), the ER theory does not require the MD simulations for hypothetical intermediate states connecting the systems of interest, leading to reduced computational costs.
View Article and Find Full Text PDFTalanta
January 2025
Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, People's Republic of China.
A novel strategy for cytochrome c selective recognition assisted with cucurbit[6]uril by host-guest interaction via N-terminal epitope imprinting and reversible addition-fragmentation chain transfer (RAFT) polymerization was developed. N-terminal nonapeptide of cytochrome c (GI-9) was used as the epitope template to achieve highly selective recognition of cytochrome c. As a common supramolecule in recent years, cucurbit[6]uril can encapsulate the butyrammonium group of lysine residue to capture the peptide and improve the corresponding spatial orientation by the host-guest interaction for GI-9 or cytochrome c recognition.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
Hypoxia, a condition that enhances tumor invasiveness and metastasis, poses a significant challenge for diverse cancer therapies. There is a pressing demand for hypoxia-responsive nanoparticles with integrated photodynamic functions in order to address the aforementioned issues and overcome the reduced efficacy caused by tumor hypoxia. Here, we report a hypoxia-responsive supramolecular nanoparticle SN@IR806-CB consisting of a dendritic drug-drug conjugate (IR806-Azo-CB) and anionic water-soluble [2]biphenyl-extended-pillar[6]arene modified with eight ammonium salt ions (AWBpP6) the synergy of π-π stacking interaction, host-guest complexation, and hydrophobic interactions for synergistic photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy (CT; , PTT-PDT-CT).
View Article and Find Full Text PDFChemistry
December 2024
Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, 400042, China.
In this study, a supramolecular fluorescent material was constructed by using double-cavity twisted cucurbit[14]uril (tQ[14]) and positively charged Astrazon Pink FG (APFG) based on the non-covalent host-guest interaction for the first time. The thermodynamic parameters of the APFG@tQ[14] in aqueous solution were determined by isothermal titration calorimetry (ITC), the results indicated that the spontaneous assembly of APFG@tQ[14] is mainly driven by enthalpy. The intramolecular charge transfer (ICT) effect induced the APFG@tQ[14] probe to emit a strong orange-red fluorescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!