An electron donor-acceptor (EDA)-triggered hydrogen atom transfer (HAT) process is developed for the efficient generation of an α-alkoxy radical from cyclic ethers to synthesize exocyclic alkenylated ethers with exclusive -selectivity. A judiciously chosen donor-acceptor pair (DABCO and maleimide) serves as the desired HAT reagent under visible light irradiation without using any photocatalyst or peroxide. A wide variety of substrates were explored to demonstrate the diverse applicability and practical viability of this cross-dehydrogenative transformation. Detailed mechanistic studies revealed a radical reaction pathway under the oxidative environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.3c03099 | DOI Listing |
Chemphyschem
January 2025
School of Energy and Power, New Energy, 02 Mengxi Street, 212003, Zhenjiang, CHINA.
Since hydrogen is a promising alternative to fossil fuels due to its high energy density and environmental friendliness, water electrolysis for hydrogen production has received widespread attentions wherein the development of active and stable catalytic materials is a key research direction. This article designs a dual transition metal doped functional graphene for hydrogen evolution reaction via density functional theory calculations. Among varied combinations, 16 candidates are screened out that are expected to be stable as reflected by the criterion of formation energy Ef < 0 and active due to its free energy of hydrogen adsorption ∆GH within the window of ±0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Donghua University, No.2999, North Renmin Road, Songjiang District, Shanghai, CHINA.
Herein, we demonstrate a two-in-one strategy for efficient neutral electrosynthesis of H2O2 via two-electron oxygen reduction reaction (2e-ORR), achieved by synergistically fine-modulating both the local microenvironment and electronic structure of indium (In) single atom (SA) sites. Through a series of finite elemental simulations and experimental analysis, we highlight the significant impact of phosphorous (P) doping on an optimized 2D mesoporous carbon carrier, which fosters a favorable microenvironment by improving the mass transfer and O2 enrichment, subsequently leading to an increased local pH levels. Consequently, an outstanding 2e-ORR performance is observed in neutral electrolytes, achieving over 95% selectivity for H2O2 across a broad voltage range of 0.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education 01 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
Photocatalytic methane oxidation under mild conditions using single-atom catalysts remains an advanced technology. In this work, gold single atoms (Au SAs) were introduced onto TiO nanostructures using a simple method. The resulting performance demonstrated effective conversion of methane into H and C products at room temperature.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Military Institute of Medicine - National Research Institute, Szaserow 128, 04-141 Warsaw, Poland. Electronic address:
Metallofullerenols and fullerenols have attracted attention due to their remarkable ability to interact with various biologically relevant molecules, paving the way for biomedical applications, ranging from medical imaging techniques to drug carriers, acting with increased efficiency and reduced side effects. In this work, we investigated the effects of two fullerene derivatives, Gd@C(OH) and C(OH), on erythrocyte membrane components under oxidative stress conditions induced by 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) as a source of peroxyl radicals. The results demonstrated that gadolinium encapsulation within the fullerene cage enhanced the electron affinity of Gd@C(OH), resulting in stronger antioxidant activity.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
Herein, we report a cascade annulation of readily available isocyanobiaryls with simple aldehydes photoredox catalysis, providing a straightforward approach towards valuable 6-hydroxyalkylated phenanthridines. Mechanistic studies indicated the generation of a key acyl radical from aldehydes by hydrogen atom abstraction with a bromine radical. This protocol exhibits exceptional chemoselectivity, excellent tolerance of various functional groups and mild reaction conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!