NITR12+ NK Cells Release Perforin to Mediate IgMhi B Cell Killing in Turbot (Scophthalmus maximus).

J Immunol

State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China.

Published: December 2023

B lymphocytes engaged in humoral immunity play a critical role in combating pathogenic infections; however, the mechanisms of NK cells in regulating the responses of B cells remain largely unknown. In the present study, we established an Edwardsiella piscicida infection model in turbot (Scophthalmus maximus) and found that the production of IgM was decreased. Meanwhile, through establishing the head kidney-derived lymphocyte infection model, we revealed that the impairment of IgMhi B cells was associated with bacterial infection-induced perforin production. Interestingly, we reveal that perforin production in NK cells is tightly regulated by an inhibitory novel immune-type receptor, NITR12. Moreover, we confirm that inhibiting NITR12 can result in elevated perforin production, engaging the impairment of IgMhi B cells. Taken together, these findings demonstrate an innovative strategy of NK cells in mediating B lymphocyte killing in turbot and suggest that relieving NK cells through NITR12 might be the target for the development of efficacious vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.2300281DOI Listing

Publication Analysis

Top Keywords

perforin production
12
killing turbot
8
turbot scophthalmus
8
scophthalmus maximus
8
infection model
8
impairment igmhi
8
igmhi cells
8
cells
7
nitr12+ cells
4
cells release
4

Similar Publications

HDAC3 inhibitors induce drug resistance by promoting IL-17 A production by T cells.

Sci Rep

December 2024

Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China.

HDAC3 has been demonstrated to play a crucial role in the progression of various tumors and the differentiation and development of T cells. However, its impact on peripheral T cells in the development of murine lung cancer remains unclear. In this experiment, a subcutaneous lung tumor model was established in C57BL/6 mice, and tumor-bearing mice were treated with the specific inhibitor of HDAC3, RGFP966, at different doses to observe changes in tumor size.

View Article and Find Full Text PDF

Heat shock protein 90 (HSP90), a vital chaperone involved in the folding and stabilization of various cellular proteins, regulates key functions in many tumor cells. In the context of gastric adenocarcinoma (GAC), where HSP90's role remains largely unexplored, we aimed to investigate the significance of HSP90 inhibitor, AUY922, in regulating the YAP1/TEAD pathway and its association with the tumor immune microenvironment (TME). Our results showed that AUY922 effectively inhibited GAC aggressiveness in both the invitro and invivo models, induced apoptosis, and cell-cycle arrest.

View Article and Find Full Text PDF

Background: To investigate the effects of LDHB on lactylation of programmed cell death 1 ligand (PD-L1) and immune evasion of ovarian cancer.

Methods: Ovarian cancer cells were transfected with LDHB siRNA and cultured with primed T cells. Cell proliferation and viability were measured by cell counting kit 8 (CCK-8) and colony formation assay.

View Article and Find Full Text PDF

Background: Long non-coding RNAs (lncRNAs) can be incorporated into exosomes to mediate the intercellular communication, regulating the occurrence, development, and immunosuppression of cancers. T cell dysfunction has been a hallmark of many cancers, including melanoma, which enables cancer cells escape from host immune surveillance. However, the molecular mechanism of exosome-transmitted lncRNAs in CD8 T cell dysfunction in melanoma remains largely unclear.

View Article and Find Full Text PDF

The adoptive transfer of autologous, long-lived, gene-repaired T cells is a promising way to treat inherited T-cell immunodeficiencies. However, adoptive T-cell therapies require a large number of T cells to be manipulated and infused back into the patient. This poses a challenge in primary immunodeficiencies that manifest early in childhood and where only small volumes of blood samples may be available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!