Background & Objectives: Mosquitoes are considered to be the deadliest arthropod-vectors, which cause millions of human deaths globally. Presently, nanotechnology in the field of insect pest management is being explored. The current study deals with the synthesis of zinc sulfide nanoparticles (ZnS NPs) in aqueous medium and their larvicidal efficacy against Ae. aegypti.

Methods: Aqueous zinc sulfide nanoparticles were synthesized by mixing equal quantities of zinc acetate and zinc sulfide solutions by using sonochemical irradiation method. The synthesized NPs were characterized by Transmission Electron Microscopy (TEM). Larvicidal activity was performed according to WHO protocol and toxicity values were calculated by log-probit technique using POLO software. The morphological alterations between treated and control larvae were observed and compared.

Results: TEM studies revealed the average particle size of synthesized nanoparticles to be 19.65 ± 1.08 nm with distorted spherical shape. The mosquito-larvicidal efficacy of ZnS NPs against Ae. aegypti showed maximum lethal effects with the LC and LC values of 4.49 and 15.58 ppm respectively. The morphological analysis of the mosquito larvae treated with ZnS NPs revealed shrunken and darkened body.

Interpretation & Conclusion: This study suggests that synthesized zinc sulfide aqua nanoparticles have good potential larvicidal properties making them best candidate for Aedes aegypti control.

Download full-text PDF

Source
http://dx.doi.org/10.4103/0972-9062.374036DOI Listing

Publication Analysis

Top Keywords

zinc sulfide
20
zns nps
12
sulfide aqua
8
aqua nanoparticles
8
sulfide nanoparticles
8
zinc
6
sulfide
5
nanoparticles
5
report larvicidal
4
larvicidal potential
4

Similar Publications

Aqueous zinc ion batteries are often adversely affected by the poor stability of zinc metal anodes. Persistent water-induced side reactions and uncontrolled dendrite growth have seriously damaged the long-term service life of aqueous zinc ion batteries. In this paper, it is reported that a zinc sulfide with optimized electron arrangement on the surface of zinc anode is used to modify the zinc anode to achieve long-term cycle stability of zinc anode.

View Article and Find Full Text PDF

Mechanoluminescence platforms, combining phosphors with elastic polymer matrix, have emerged in smart wearable technology due to their superior elasticity and mechanically driven luminescent properties. However, their luminescence performance often deteriorates under extreme elastic conditions owing to a misinterpretation of polymer matrix behavior. Here, we unveil the role of the polymer matrices in mechanoluminescence through an interface-triboelectric effect driven by elasticity, achieving both high elasticity and brightness.

View Article and Find Full Text PDF

The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.

View Article and Find Full Text PDF

The excessive use of pesticides is an urgent issue facing environmental sustainability and human health. In this study, a uniform dispersion size, good fluorescence performance and mesoporous structure of a ratiometric fluorescent probe were constructed for nicosulfuron detection. A solvent-free in situ solid-phase synthesis method was used to encapsulate biomass carbon dots within mesoporous silica (CDs@mSiO₂), followed by the modification of l-cysteine-modified manganese-doped zinc sulfide quantum dots (ZnS:Mn QDs), to construct a ratiometric fluorescent probe for highly sensitive and selective detection of nicosulfuron.

View Article and Find Full Text PDF

In the present study, extracellular cell-free filtrate (CFF) of fungal Fusarium oxysporum f. sp. cucumerinum (FOC) species, was utilized to biosynthesize zinc oxide /zinc sulfide (ZnO/ZnS) nanocomposite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!