A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long non-coding RNA regulates neurogenesis of induced neural stem cells in a mouse model of closed head injury. | LitMetric

Long non-coding RNA regulates neurogenesis of induced neural stem cells in a mouse model of closed head injury.

Neural Regen Res

Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China.

Published: April 2024

Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury. We previously reported that induced neural stem cells exert beneficial effects on neural regeneration via cell replacement. However, the neural regeneration efficiency of induced neural stem cells remains limited. In this study, we explored differentially expressed genes and long non-coding RNAs to clarify the mechanism underlying the neurogenesis of induced neural stem cells. We found that H19 was the most downregulated neurogenesis-associated lncRNA in induced neural stem cells compared with induced pluripotent stem cells. Additionally, we demonstrated that H19 levels in induced neural stem cells were markedly lower than those in induced pluripotent stem cells and were substantially higher than those in induced neural stem cell-derived neurons. We predicted the target genes of H19 and discovered that H19 directly interacts with miR-325-3p, which directly interacts with Ctbp2 in induced pluripotent stem cells and induced neural stem cells. Silencing H19 or Ctbp2 impaired induced neural stem cell proliferation, and miR-325-3p suppression restored the effect of H19 inhibition but not the effect of Ctbp2 inhibition. Furthermore, H19 silencing substantially promoted the neural differentiation of induced neural stem cells and did not induce apoptosis of induced neural stem cells. Notably, silencing H19 in induced neural stem cell grafts markedly accelerated the neurological recovery of closed head injury mice. Our results reveal that H19 regulates the neurogenesis of induced neural stem cells. H19 inhibition may promote the neural differentiation of induced neural stem cells, which is closely associated with neurological recovery following closed head injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664125PMC
http://dx.doi.org/10.4103/1673-5374.382255DOI Listing

Publication Analysis

Top Keywords

induced neural
56
neural stem
56
stem cells
56
neural
19
stem
18
induced
17
closed head
16
head injury
16
cells
14
neurogenesis induced
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!