Synthetic polycations have been shown to bind and neutralize glomerular polyanions (GPA), thereby increasing the permeability of the glomerular capillary wall (GCW). In the present study it is demonstrated that human platelet-derived cationic proteins (HuPlt CP), which are able to increase cutaneous vascular permeability, bind in vitro to the GCW following incubation of normal human kidney sections with purified HuPlt CP or with washed human platelets stimulated with thrombin, immune complexes (IC) and platelet-activating factor (PAF), or stimulated with a suspension of washed human platelets and polymorphonuclear leukocytes in the presence of phagocytable substrate. The antiserum used in immunofluorescence test to detect the binding of HuPlt CP was specific for two different molecular types of HuPlt CP, both with an isoelectric point (pI) of 10.5. Glomerular deposits of HuPlt CP were also detectable by immunofluorescence microscopy in renal glomeruli present in tissue obtained by biopsy from patients with systemic lupus erythematosus (SLE), a disease in which platelets have been implicated as mediator of glomerular injury. These data indicate that when activated platelets release HuPlt CP in vivo, these proteins bind to glomerular structures. The binding of HuPlt CP to GCW appears to be ionic in nature since heparin, a polyanion, prevents this binding in vitro. In addition, heparin, as well as a high molarity buffer, removed deposits of HuPlt CP bound in vitro to normal GCW or bound in vivo to glomeruli of patients with SLE. The binding of HuPlt CP to GCW is associated with loss of colloidal iron staining, a qualitative technique that demonstrates primarily epithelial cell surface anionic sialoglycoproteins. In experiments of in vitro binding of purified HuPlt CP to section of normal kidney treatment with heparin completely restores the normal pattern of colloidal iron staining suggesting ionic neutralization of GPA. In contrast, heparin is only partially effective in restoring colloidal iron staining in normal kidney sections treated with platelets directly stimulated with IC or PAF or in kidney sections of patients with SLE. These observations indicate that under these conditions the ionic interaction of HuPlt CP with GCW is only partially responsible for the loss of colloidal iron staining. The results of the present study suggest that biologically active polycationic mediators released from stimulated platelets localize in GCW and participate in the induction of glomerular injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ki.1986.221 | DOI Listing |
J Nanobiotechnology
January 2025
State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.
RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China. Electronic address:
Low-cost and effective electrocatalysts are critical for energy storage and conversion. Herein, iron(III) and vanadium(III) acetylacetonates were first adsorbed and confined in porous zeolitic imidazolate framework-8 (ZIF-8), which further cross-linked together by the methanol-induced-assembly. Following the pyrolysis, the FeVO nanoparticles were efficiently encapsulated within three-dimensional (3D) N-doped interconnected porous carbon, termed FeVO/NIPC.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 PR China. Electronic address:
Iron phthalocyanine (FePc) is a promising non-noble metal catalyst for oxygen reduction reaction (ORR). While, with the plane-symmetric FeN site, the ORR activity of FePc is generally low due to its low ability to adsorb and activate O. Herein, we anchor FePc on Mg(OH)/N-doped carbon nanosheets building the ternary plate-like catalyst FePc/Mg(OH)/NC.
View Article and Find Full Text PDFNanoscale
January 2025
Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
Hybrid polyionic complexes (HPICs) are colloidal structures with a charged core rich in metal ions and a neutral hydrophilic corona. Their properties, whether as reservoirs or catalysts, depend on the accessibility and environment of the metal ions. This study demonstrates that modifying the coordination sphere of these ions can tune the properties of HPICs by altering the composition of the complexing block or varying formulation conditions.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
Magnetic chromatography was exploited to fractionate suspensions of magnetoliposomes (SML: lumen-free lipid-encapsulated clusters of multiple magnetic iron-oxide nanoparticles) improving their colloidal properties and relaxivity (magnetic resonance image contrast capability). Fractionation (i) removed sub-populations that do not contribute to the MRI response, and thus (ii) enabled evaluation of the size-dependence of relaxivity for the MRI-active part, which was surprisingly weak in the 55-90 nm range. MC was therefore implemented for processing multiple PEGylated SML types having average sizes ranging from 85 to 105 nm, which were then shown to have strongly size-dependent uptake in an pancreatic cancer model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!