Similar Publications

Airborne ultrasound phased arrays (AUPAs) generate non-contact tactile sensations and enable acoustic levitation with specific focus fields. Using multiple units together offers numerous advantages, such as increased stimulus intensity and the ability to overcome occlusion. The AUPA units are typically mounted on a fixed frame, with their poses manually measured using tools such as a ruler for calibration.

View Article and Find Full Text PDF

Acoustically levitated droplets in the nanoliter to microliter range are studied in various fields. The volume measurements of these are conventionally done using image analysis. A precision-produced calibration sphere is often used to calibrate the recording equipment, which is time-consuming and expensive.

View Article and Find Full Text PDF

The most common methodology for performing multiple chemical and biological reactions in parallel is to use microtitre plates with either manual or robotic dispensing of reactants and wash solutions. We envision a paradigm shift where acoustically levitated droplets serve as wells of microtitre plates and are acoustically manipulated to perform chemical and biological reactions in a non-contact fashion. This in turn requires that lines of droplets can be levitated and manipulated simultaneously so that the same operations (merge, mix, and detect) can be performed on them in parallel.

View Article and Find Full Text PDF

Atomization by Acoustic Levitation Facilitates Contactless Microdroplet Reactions.

J Am Chem Soc

October 2024

College of Chemistry, Frontiers Science Center for New Organic Matter, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin, 300071, China.

Microdroplet chemistry is now well-known to be able to remarkably accelerate otherwise slow reactions and trigger otherwise impossible reactions. The uniqueness of the microdroplet is attributable to either the air-water interface or solid-liquid interface, depending on the medium that the microdroplet is in contact with. To date, the importance of the solid-liquid interface might have been confirmed, but the contribution from the air-water interface seems to be elusive due to the lack of method for generating contactless microdroplets.

View Article and Find Full Text PDF

An elastic piezoelectric nanomembrane with double noise reduction for high-quality bandpass acoustics.

Nat Commun

October 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.

Polymer piezoelectrics with high electromechanical energy conversion (HEEC) are very promising for flexible acoustoelectric devices. However, reducing thickness and improving ordered polarization and ferroelectricity while maintaining high mechanical strength pose enormous fabrication challenges for polymer piezoelectric membranes-additionally, noise management in the acoustoelectric conversion remains an open issue. Here, we present a hydro-levitation superspreading approach for fabricating polymer nanomembranes with ordered crystalline phases and sub-nanostructures on the water surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!